13.z=$\frac{i}{1+i}$對應(yīng)的點在復(fù)平面的( 。
A.第一象限B.第二象限C.第三象限D.第四象限

分析 利用復(fù)數(shù)的運算法則、幾何意義即可得出.

解答 解:z=$\frac{i}{1+i}$=$\frac{i(1-i)}{(1+i)(1-i)}$=$\frac{1}{2}+\frac{1}{2}$i對應(yīng)的點$(\frac{1}{2},\frac{1}{2})$在復(fù)平面的第一象限.
故選:A.

點評 本題考查了復(fù)數(shù)的運算法則、幾何意義,考查了推理能力與就你死了,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若函數(shù)y=$\sqrt{x-1}$的定義域為集合A,函數(shù)y=x2+2的值域為集合B,則A∩B=(  )
A.[1,+∞)B.(1,+∞)C.[2,+∞)D.(0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若α是第三象限角,則180°-α是第四象限角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.有一個袋子中裝有標(biāo)注數(shù)字1,2,3,4的四個小球,這些小球除標(biāo)注的數(shù)字外完全相同,現(xiàn)從中隨機(jī)取出2個小球,則取出的小球標(biāo)注的數(shù)字之和為5的概率是( 。
A.$\frac{1}{12}$B.$\frac{2}{3}$C.$\frac{1}{6}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,在△ABC中,∠ABC=90°,AB=$\sqrt{3}$,BC=1,P為△ABC內(nèi)一點,∠BPC=90°.
(Ⅰ)若PB=$\frac{1}{2}$,求PA;
(Ⅱ)若∠APB=150°,設(shè)∠PBA=α,求tan2α值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.9191除以100的余數(shù)是      (  )
A.1B.9C.11D.91

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.在△ABC中,角A,B,C所對的邊分別為a,b,c,若b=2,B=45°,且此三角形只有一個解,則實數(shù)a的取值范圍是(0,2]∪{2$\sqrt{2}$}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.函數(shù)f(x)=$\frac{1}{{{2^x}-2}}$+a關(guān)于(1,0)對稱.
(1)求a得值;
(2)解不等式f(x)<$\frac{5}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.定義在R上的單調(diào)函數(shù)f(x)滿足f(3)>f(0),且對任意x,y∈R都有f(x+y)=f(x)+f(y).
(1)求證f(x)為奇函數(shù);
(2)若f(k•3x)+f(3x-9x-2)<0對任意x∈R恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案