分析 用誘導(dǎo)公式化簡已知,利用正弦定理將acosA=bcosB中等號兩邊的邊轉(zhuǎn)化為該邊所對角的正弦,化簡整理即可.
解答 解:∵在△ABC中,$acos({π-A})+bsin({\frac{π}{2}+B})=0$,
∴acosA=bcosB,
∴由正弦定理得:a=2RsinA,b=2RsinB,
∴sinAcosA=sinBcosB,
∴$\frac{1}{2}$sin2A=$\frac{1}{2}$sin2B,
∴sin2A=sin2B,
∴2A=2B或2A=π-2B,
∴A=B或A+B=$\frac{π}{2}$,
∴△ABC為等腰或直角三角形,
故答案為:等腰三角形或直角三角形.
點(diǎn)評 本題考查三角形的形狀判斷,著重考查正弦定理與二倍角的正弦的應(yīng)用,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 平行 | B. | 在平面內(nèi) | C. | 平行或在平面內(nèi) | D. | 相交或平行 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{10}{3}$ | B. | -$\frac{10}{3}$ | C. | -$\frac{20}{3}$ | D. | $\frac{20}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{5}{2}$ | B. | $\frac{{\sqrt{5}}}{2}$ | C. | 5 | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若a>b,則ac2>bc2 | B. | 若a>b,則a2>b2 | ||
C. | 若a<b<0,則a2<ab<b2 | D. | 若a<b<0,則$\frac{a}$>$\frac{a}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com