【題目】設某單位用2160萬元購得一塊空地,計劃在該空地上建造一棟至少10層,每層2000平方米的樓房.經(jīng)測算,如果將樓房建為層,則每平方米的平均建筑費用為 (單位:元).
(1)寫出樓房每平方米的平均綜合費用關于建造層數(shù)的函數(shù)關系式;
(2)該樓房應建造多少層時,可使樓房每平方米的平均綜合費用最少?最少值是多少?
(注:平均綜合費用=平均建筑費用+平均購地費用,平均購地費用=)
【答案】(1)y=560+48x+ (x≥10,x∈N*);(2)該樓房建造15層時,可使樓房每平方米的平均綜合費用最少,最少值為2000元.
【解析】試題分析:(1)由已知得,樓房每平方米的平均綜合費為每平方米的平均建筑費用為560+48x與平均地皮費用的和,由已知中某單位用2160萬元購得一塊空地,計劃在該地塊上建造一棟x層,每層2000平方米的樓房,我們易得樓房平均綜合費用y關于建造層數(shù)x的函數(shù)關系式;(2)由(1)中的樓房平均綜合費用y關于建造層數(shù)x的函數(shù)關系式,要求樓房每平方米的平均綜合費用最小值,利用基本不等式,求最小值.
試題解析:
(1)依題意得y=(560+48x)+
=560+48x+(x≥10,x∈N*).
(2)∵x>0,∴48x+≥2=1440,
當且僅當48x=,即x=15時取到“=”,
此時,平均綜合費用的最小值為560+1440=2000(元).
∴當該樓房建造15層時,可使樓房每平方米的平均綜合費用最少,最少值為2000元.
科目:高中數(shù)學 來源: 題型:
【題目】共享單車是城市交通的一道亮麗的風景,給人們短距離出行帶來了很大的方便.某!眴诬嚿鐖F”對市年齡在歲騎過共享單車的人群隨機抽取人調(diào)查,騎行者的年齡情況如下圖顯示。
(1)已知年齡段的騎行人數(shù)是兩個年齡段的人數(shù)之和,請估計騎過共享單車人群的年齡的中位數(shù);
(2)從兩個年齡段騎過共享單車的人中按的比例用分層抽樣的方法抽取人,從中任選人,求兩人都在)的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設復數(shù)z=2m+(4-m2)i,當實數(shù)m取何值時,復數(shù)z對應的點:
(1)位于虛軸上?
(2)位于一、三象限?
(3)位于以原點為圓心,以4為半徑的圓上?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點A(l,2)在函數(shù)f(x)=ax3的圖象上,則過點A的曲線C:y=f(x)的切線方程是( 。
A. 6x﹣y﹣4=0 B. x﹣4y+7=0
C. 6x﹣y﹣4=0或x﹣4y+7=0 D. 6x﹣y﹣4=0或3x﹣2y+1=0
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系xOy中,以O為極點,x軸正半軸為極軸建立極坐標系,圓C的極坐標方程為ρ=2cos,直線l的參數(shù)方程為 (t為參數(shù)),直線l與圓C交于A,B兩點,P是圓C上不同于A,B的任意一點.
(1)求圓心的極坐標;
(2)求△PAB面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本題滿分12分)甲、乙兩位學生參加數(shù)學競賽培訓,現(xiàn)分別從他們在培訓期間參加的若干次預賽成績中隨機抽取8次,記錄如下:
甲 82 81 79 78 95 88 93 84
乙 92 95 80 75 83 80 90 85
(1)用莖葉圖表示這兩組數(shù)據(jù);
(2)現(xiàn)要從中選派一人參加數(shù)學競賽,從統(tǒng)計學的角度(在平均數(shù)、方差或標準差中選兩個)分析,你認為選派哪位學生參加合適?請說明理由
參考公式:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】《九章算術(shù)》是我國古代數(shù)學成就的杰出代表.其中《方田》章給出計算弧田面積所用的經(jīng)驗公式為:弧田面積.弧田,由圓弧和其所對的弦所圍成.公式中“弦”指圓弧所對弦長,“矢”等于半徑長與圓心到弦的距離之差,按照上述經(jīng)驗公式計算所得弧田面積與實際面積之間存在誤差.現(xiàn)有圓心角為,弦長等于米的弧田. 按照上述經(jīng)驗公式計算所得弧田面積與實際面積的誤差為_______平方米.(用“實際面積減去弧田面積”計算)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】古希臘有一著名的尺規(guī)作圖題“倍立方問題”:求作一個正方體,使它的體積等于已知立方體體積的2倍,倍立方問題可以利用拋物線(可尺規(guī)作圖)來解決,首先作一個通徑為(其中正數(shù)為原立方體的棱長)的拋物線,如圖,再作一個頂點與拋物線頂點重合而對稱軸垂直的拋物線,且與交于不同于點的一點,自點向拋物線的對稱軸作垂線,垂足為,可使以為棱長的立方體的體積為原立方體的2倍.
(1)建立適當?shù)钠矫嬷苯亲鴺讼,求拋物線的標準方程;
(2)為使以為棱長的立方體的體積為原立方體的2倍,求拋物線的標準方程(只須以一個開口方向為例).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,某公園摩天輪的半徑為,圓心距地面的高度為,摩天輪做勻速轉(zhuǎn)動,每轉(zhuǎn)一圈,摩天輪上的點的起始位置在最低點處.
(1)已知在時刻時距離地面的高度,(其中),求時距離地面的高度;
(2)當離地面以上時,可以看到公園的全貌,求轉(zhuǎn)一圈中有多少時間可以看到公園的全貌?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com