19.f(x)=ax3+bx2+cx的極值點為±1,且f(-1)=-1,則a+b+c的值為( 。
A.1B.-1C.2D.-2

分析 由函數(shù)f(x)=ax3+bx2+cx在x=±1處取得極值,求導(dǎo),可得±1是f′(x)=0的兩根,且f(-1)=-1,解方程組即可求得,a,b,c的值,相加即可.

解答 解:(Ⅰ)f′(x)=3ax2+2bx+c
依題意$\left\{\begin{array}{l}{f′(1)=3a+2b+c=0}\\{f′(-1)=3a-2b+c=0}\end{array}\right.$⇒$\left\{\begin{array}{l}{b=0}\\{3a+c=0}\end{array}\right.$,
又f(-1)=-a+b-c=-1,
∴c=$\frac{3}{2}$,b=0,a=-$\frac{1}{2}$,
∴a+b+c=1,
故選:A.

點評 本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和極值問題,體現(xiàn)了數(shù)形結(jié)合和轉(zhuǎn)化的思想,考查了學(xué)生靈活應(yīng)用知識分析解決問題的能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知函數(shù)f(x)=x2cos$\frac{πx}{2}$,在數(shù)列{an}中,an=f(n)+f(n+1)(n∈N*),則數(shù)列{an}的前80項之和S80=6560.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知點M(-1,0),N(1,0),曲線E上任意一點到點M的距離均是到點N的距離的$\sqrt{3}$倍.
(1)求曲線E的方程;
(2)已知m≠0,設(shè)直線l:x-my-1=0交曲線E于A,C兩點,直線l2:mx+y-m=0交曲線E于B,D兩點,若CD的斜率為-1時,求直線CD的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知函數(shù)f(x)在x=c處的導(dǎo)數(shù)存在,則“c為函數(shù)f(x)的極值點”是“f′(c)=0”成立的(  )
A.充分非必要條件B.必要非充分條件
C.充要條件D.既非充分也非必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.求函數(shù)f(x)=-x(x-2)2的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)$f(x)=\frac{m}{2}{x^2}-x-lnx$.
(Ⅰ)求曲線C:y=f(x)在x=1處的切線l的方程;
(Ⅱ)若函數(shù)f(x)在定義域內(nèi)是單調(diào)函數(shù),求m的取值范圍;
(Ⅲ)當m>-1時,(Ⅰ)中的直線l與曲線C:y=f(x)有且只有一個公共點,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.如圖,某幾何體的三視圖如圖所示,則此幾何體的體積為64-$\frac{32π}{3}$.(單位:cm2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知f(x)=2ln(x+2)-(x+1)2,g(x)=k(x+1).
(Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)當k=2時,求證:對于?x>-1,f(x)<g(x)恒成立;
(Ⅲ)若存在x0>-1,使得當x∈(-1,x0)時,恒有f(x)>g(x)成立,試求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知函數(shù)f(x)=ax3+bx2+cx+d在O、A兩點處取得極值,其中O是坐標原點,A在曲線y=xsinx(x∈[$\frac{π}{3}$,$\frac{2π}{3}$])上,則曲線y=f(x)的切線斜率的最大值為$\frac{3}{2}$.

查看答案和解析>>

同步練習(xí)冊答案