16.某幾何體的三視圖如圖所示,則該幾何體的體積為(  )
A.$\frac{1}{3}$+πB.$\frac{2}{3}$+2πC.$\frac{8}{3}$+8πD.$\frac{4}{3}$+4π

分析 由三視圖可知:該幾何體由兩部分組成,左邊為三棱錐,右邊為圓柱的一半.即可得出.

解答 解:由三視圖可知:該幾何體由兩部分組成,左邊為三棱錐,右邊為圓柱的一半.
∴V=$\frac{1}{3}×$$\frac{1}{2}×4×2×2$+$\frac{1}{2}×π×{2}^{2}×4$=$\frac{8}{3}$+8π.
故選:C.

點評 本題考查了三視圖的有關知識與計算,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

6.下列結(jié)論正確的是(2)(3).
(1)函數(shù)f(x)=sinx在第一象限是增函數(shù);
(2)△ABC中,“A>B”是“cosA<cosB”的充要條件;
(3)設$\overrightarrow{a}$,$\overrightarrow$是非零向量,命題“若|$\overrightarrow{a}$•$\overrightarrow$|=|$\overrightarrow{a}$||$\overrightarrow$|,則?t∈R,使得$\overrightarrow{a}$=t$\overrightarrow$”的否命題和逆否命題都是真命題;
(4)函數(shù)f(x)=2x3-3x2,x∈[-2,t](-2<t<1)的最大值為0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.方程logax=x-2(0<a<1)的實數(shù)解的個數(shù)是( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.下列各式(各式均有意義)不正確的個數(shù)為(  )
①loga(MN)=logaM+logaN   
②loga(M-N)=$\frac{lo{g}_{a}M}{lo{g}_{a}N}$
③${a}^{{-}^{\frac{n}{m}}}=\frac{1}{\root{m}{{a}^{n}}}$ ④(amn=amn    ⑤loganb=-nlogab.
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知函數(shù)f(x)=lnx+$\frac{a-x}{x}$,其中a為常數(shù),且a>0.
(1)若曲線y=f(x)在點(1,f(1))處的切線與直線y=$\frac{1}{2}$x+1垂直,求a的值;
(2)求函數(shù)f(x)在區(qū)間[1,2]上的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.如圖,已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率e=$\frac{1}{2}$,定點A(-$\frac{1}{2}$,$\frac{3\sqrt{5}}{4}$)在橢圓上,F(xiàn)1,F(xiàn)2為橢圓的左、右焦點,定直線l的方程為x=-4,過橢圓上一點P作切線m與l交于T點,過P且垂直于直線m的直線n交F1F2于點M.
(1)求橢圓的方程;
(2)設橢圓的離心率為e,求證:$\frac{{F}_{1}M}{P{F}_{1}}$=e;
(3)證明PM為∠F1PF2的平分線.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.在平行四邊形ABCD中,下列結(jié)論中錯誤的是( 。
A.$\overrightarrow{AB}=\overrightarrow{DC}$B.$\overrightarrow{AD}+\overrightarrow{AB}=\overrightarrow{AC}$C.$\overrightarrow{AB}-\overrightarrow{AD}=\overrightarrow{BD}$D.$\overrightarrow{AD}+\overrightarrow{CD}=\overrightarrow{BD}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.在長方體ABCD-A1B1C1D1中,底面邊長AB=3m,BC=4m,高BB1=5m,求:
(1)寫出B1D、BC1在平面ABCD內(nèi)的射影;
(2)對角線DB1與平面ABCD所成角的大小;
(3)BC1與平面ABCD所成角的正切.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知x2+y2=4,x>0,y>0,且loga(2+x)=m,loga$\frac{1}{2-x}$=n,則logay等于( 。
A.m+nB.m-nC.$\frac{1}{2}$(m+n)D.$\frac{1}{2}$(m-n)

查看答案和解析>>

同步練習冊答案