4.已知兩條直線l1:3x+4y-2=0與l2:2x+y+2=0的交點(diǎn)P,求:
(1)過點(diǎn)P且過原點(diǎn)的直線l的方程;
(2)若直線m與l平行,且點(diǎn)P到直線m的距離為3,求直線m的方程.

分析 兩條直線l1:3x+4y-2=0與l2:2x+y+2=0的方程聯(lián)立可得交點(diǎn)P.
(1)利用點(diǎn)斜式即可得出.
(2)由直線m與直線l平行,可設(shè)直線m的方程為x+y+C=0,由點(diǎn)到直線的距離公式可得C.

解答 解:由$\left\{\begin{array}{l}{3x+4y-2=0}\\{2x+y+2=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=-2}\\{y=2}\end{array}\right.$,∴點(diǎn)P的坐標(biāo)是(-2,2),
(1)k=$\frac{2}{-2}$=-1,可得所求直線方程為y=-x.
(2)由直線m與直線l平行,可設(shè)直線m的方程為x+y+C=0,由點(diǎn)到直線的距離公式得$\frac{|-2+2+c|}{\sqrt{2}}$=3,解得c=$±3\sqrt{2}$,故所求直線方程為x+y+3$\sqrt{2}$=0或x+y-3$\sqrt{2}$=0.

點(diǎn)評(píng) 本題考查了相互平行的直線斜率之間的關(guān)系、點(diǎn)到直線的距離公式、直線的交點(diǎn)坐標(biāo),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知點(diǎn)A(x1,f(x1)),B(x2,f(x2))是函數(shù)f(x)=2sin(ωx+φ)(ω>0,-2π<φ≤0)圖象上的任意兩點(diǎn),且角φ的終邊經(jīng)過點(diǎn)P(1,-$\sqrt{3}$),已知|f(x1)-f(x2)|=4時(shí),|x1-x2|的最小值為$\frac{π}{3}$.
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(3)當(dāng)x∈[0,$\frac{π}{3}$]時(shí),不等式mf(x)+2m≥f(x)恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.命題“對(duì)任意x∈R,都有x2≥0”的否定為存在x0∈R,使得x${\;}_{0}^{2}$<0.存在x0∈R,使得x${\;}_{0}^{2}$<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖直角梯形OABC中,$∠COA=∠OAB=\frac{π}{2},OC=2,OA=AB=1,SO⊥$面OABC,SO=1,以O(shè)C,OA,OS分別為x軸,y軸,z軸建立直角坐標(biāo)系O-xyz.
(1)求$\overrightarrow{SC}$與$\overrightarrow{OB}$的夾角α的余弦值;
(2)設(shè)SB與平面SOC所成的角為β,求sinβ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.函數(shù)$y=lg\sqrt{x+1}$的定義域是(-1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.某校從參加高三模擬考試的學(xué)生中隨機(jī)抽取60名學(xué)生,將其數(shù)學(xué)成績(均為整數(shù))分成六段[90,100),[100,110),…,[140,150]后得到如圖所示的頻率分布直方圖,則估計(jì)本次考試的平均分為(  )
A.121B.119C.118.5D.118

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)[x]表示不超過x的最大整數(shù)(如$[2]=2,[{\frac{5}{4}}]=1$),對(duì)于函數(shù)f(x)=$\frac{{{{2015}^x}}}{{1+{{2015}^x}}}$,函數(shù)$g(x)=[{f(x)-\frac{1}{2}}]+[{f(-x)-\frac{1}{2}}]$的值域是( 。
A.{-1,0}B.{-1,1}C.{0,1}D.{-1,0,1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知參數(shù)方程$\left\{\begin{array}{l}{x=at+lcosq}\\{y=bt+lsinq}\end{array}\right.$(a、b、l均不為零,0≤q≤2p),若分別取①t為參數(shù),②l為參數(shù),③q為參數(shù),則下列結(jié)論中成立的是( 。
A.①、②、③均直線B.只有②是直線C.①、②是直線,③是圓D.②是直線,①、③是圓

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.下列說法中正確的有③
①向一個(gè)圓面內(nèi)隨機(jī)地投一個(gè)點(diǎn),如果該點(diǎn)落在圓內(nèi)任意一點(diǎn)都是等可能的,則該隨機(jī)試驗(yàn)的數(shù)學(xué)模型是古典概型.
②拋擲兩枚硬幣,出現(xiàn)“兩枚都是正面朝上”、“兩枚都是反面朝上”、“恰好一枚硬幣正面朝上”的概率一樣大
③用樣本的頻率分布估計(jì)總體分布的過程中,樣本容量越大,估計(jì)越準(zhǔn)確.

查看答案和解析>>

同步練習(xí)冊(cè)答案