10.設(shè)函數(shù)f(x)=|x-a|-x.
(1)當(dāng)a=3時(shí),求函數(shù)f(x)的值域;
(2)若g(x)=|x+1|,求不等式g(x)+x>1-f(x)恒成立時(shí)a的取值范圍.

分析 (1)代入可得f(x)=|x-3|-x,去絕對(duì)值,分類(lèi)討論即可;
(2)整理不等式得|x+1|+|x-a|>1恒成立,只需求左式的最小值,利用絕對(duì)值不等式性質(zhì)可解.

解答 解:(1)當(dāng)a=3時(shí),
f(x)=|x-3|-x,
當(dāng)x≥3時(shí),f(x)=-3.
當(dāng)x<3時(shí),f(x)=-2x+3,
∴f(x)>f(3)=-3,
∴f(x)的值域?yàn)閇-3,+∞);
(2)g(x)+x>1-f(x)恒成立,
∴|x+1|+|x-a|>1恒成立,
∵|x+1|+|x-a|≥|x+1-(x-a)|=|a+1|,
∴|a+1|>1,
∴a>0或a<-2.

點(diǎn)評(píng) 考查了絕對(duì)值函數(shù)和絕對(duì)值不等式性質(zhì),恒成立問(wèn)題的轉(zhuǎn)換.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知函數(shù)f(x)=loga(ax2+2x+a2)在[-4,-2]上是增函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知:f(x)=$\left\{\begin{array}{l}{{2}^{x}-1,x≥0}\\{f(x+1),-1≤x<0}\end{array}\right.$.
(1)分別求f(f(-1))、f(f(1))的值;
(2)求當(dāng)-1≤x<0時(shí),f(x)的表達(dá)式,并畫(huà)出函數(shù)f(x)的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.設(shè)x>0,y>0,且x2+$\frac{{y}^{2}}{2}$=1,求x$\sqrt{1+{y}^{2}}$的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知函數(shù)f(x)的定義域?yàn)镽,對(duì)任意的實(shí)數(shù)x,y,均有f(x+y)=f(x)f(y),且f(x)≠0,當(dāng)x>0時(shí),f(x)>1.
(1)證明:f(0)=1;
(2)證明:f(x)在R上是增函數(shù);
(3)若f(x-2)•f(2x-x2)>1,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+x,x<0}\\{-{x}^{2},x≥0}\end{array}\right.$,則f(f(1))=0,方程f(f(x))=1的解是-$\frac{\sqrt{2+2\sqrt{5}}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知logax=2,logay=3,求(x•$\sqrt{\frac{{x}^{-\frac{1}{2}}}{y}}$)${\;}^{\frac{1}{3}}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.某高校共有學(xué)生15 000人,其中男生10 500人,女生4500人.為調(diào)查該校學(xué)生每周平均體育運(yùn)動(dòng)時(shí)間的情況,采用分層抽樣的方法,收集300位學(xué)生每周平均體育運(yùn)動(dòng)時(shí)間的樣本數(shù)據(jù)(單位:小時(shí)).
(1)應(yīng)收集多少位女生的樣本數(shù)據(jù)?
(2)根據(jù)這300個(gè)樣本數(shù)據(jù),得到學(xué)生每周平均體育運(yùn)動(dòng)時(shí)間的頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)的分組區(qū)間為:[0,2],(2,4],(4,6],(6,8],(8,10],(10,12].估計(jì)該校學(xué)生每周平均體育運(yùn)動(dòng)時(shí)間超過(guò)4小時(shí)的概率.
(3)在樣本數(shù)據(jù)中,有60位女生的每周平均體育運(yùn)動(dòng)時(shí)間超過(guò)4小時(shí),請(qǐng)完成每周平均體育運(yùn)動(dòng)時(shí)間與性別列聯(lián)表,并判斷是否有95%的把握認(rèn)為“該校學(xué)生的每周平均體育運(yùn)動(dòng)時(shí)間與性別有關(guān)”.
P(K2≥k00.100.050.0100.005
k02.7063.8416.6357.879
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.設(shè)集合A={1,2,4,6,8},B={1,2,3,5,6,7},則A∩B的子集個(gè)數(shù)為( 。
A.3B.6C.8D.16

查看答案和解析>>

同步練習(xí)冊(cè)答案