12.設(shè)平面區(qū)域D是由雙曲線y2-$\frac{{x}^{2}}{4}$=1的兩條漸近線和拋物線y2=-8x的準(zhǔn)線所圍成的三角形區(qū)域(含邊界),若點(x,y)∈D,則z=|3x-4y+5|的最大值是15.

分析 先求出雙曲線的兩條漸近線為,拋物線y2=-8x的準(zhǔn)線為x=2,結(jié)合圖象可得在點B(2,-1)時,z=|3x-4y+5|取得最大值.

解答 解:雙曲線y2-$\frac{{x}^{2}}{4}$=1的兩條漸近線為y=±$\frac{1}{2}$x,拋物線y2=-8x的準(zhǔn)線為x=2.
故可行域即圖中陰影部分,(含邊界).
目標(biāo)函數(shù)z=|3x-4y+5|的幾何意義就是,可行域的點到直線3x-4y+5=0的距離的5倍:由圖形可知B到3x-4y+5=0的距離最大,
故在點B(2,-1)時,最大值為:$5×\frac{|3×2+4×1+5|}{\sqrt{{3}^{2}+{4}^{2}}}$=15.
故答案為:15.

點評 本題主要考查拋物線、雙曲線的標(biāo)準(zhǔn)方程,圓錐曲線的綜合應(yīng)用,以及圓錐曲線的簡單性質(zhì),簡單的線性規(guī)劃問題,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.某工廠平均每天生產(chǎn)某種機器零件大約10000件,要求產(chǎn)品檢驗員每天抽取50件零件,檢查其質(zhì)量狀況,采用系統(tǒng)抽樣方法抽取,若抽取的第一組中的號碼為0010,則第三組抽取的號碼為0410.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知不等式組$\left\{\begin{array}{l}{x+y-2\sqrt{2}≥0}\\{x≤2\sqrt{2}}\\{y≤2\sqrt{2}}\end{array}\right.$表示平面區(qū)域Ω,過區(qū)域Ω中的任意一個點P,作圓x2+y2=1的兩條切線且切點分別為A,B,當(dāng)△PAB的面積最小時,cos∠APB的值為( 。
A.$\frac{7}{8}$B.$\frac{1}{2}$C.$\frac{3}{4}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.某企業(yè)有4個分廠,新培訓(xùn)了一批6名技術(shù)人員,將這6名技術(shù)人員分配到各分廠,要求每個分廠至少1人,則不同的分配方案種數(shù)為( 。
A.1080B.480C.1560D.300

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)x∈R,則x>1的一個必要不充分條件是( 。
A.x>0B.x<0C.x>2D.x<2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知兩個不共線向量$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$,且$\overrightarrow{AB}$=$\overrightarrow{{e}_{1}}$+λ$\overrightarrow{{e}_{2}}$,$\overrightarrow{BC}$=3$\overrightarrow{{e}_{1}}$+4$\overrightarrow{{e}_{2}}$,$\overrightarrow{CD}$=2$\overrightarrow{{e}_{1}}$-7$\overrightarrow{{e}_{2}}$,若A,B,D三點共線,則λ的值為-$\frac{3}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.函數(shù)y=$\frac{1}{\sqrt{{a}^{2}-{x}^{2}}}$,那么y′等于( 。
A.-$\frac{\sqrt{{a}^{2}-{x}^{2}}}{a}$B.$\frac{1}{2}$(a2-x2)${\;}^{\frac{3}{2}}$C.x(a2-x2)${\;}^{-\frac{3}{2}}$D.-$\frac{1}{2}$(a2-x2)${\;}^{\frac{3}{2}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.復(fù)數(shù)z=(-2+i)i,則復(fù)數(shù)z的共軛復(fù)數(shù)是(  )
A.-2+iB.-2-iC.-1+2iD.-1-2i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.如圖,在直四棱柱ABCD-A1B1C1D1中,底面ABCD為正方形,AA1=2,AB=1,M為AD1的中點,N在BC上,且MN∥平面DCC1D1,則BN的長為( 。
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

同步練習(xí)冊答案