18.如圖所示,圓柱的高為2,底面半徑為$\sqrt{7}$,AE,DF是圓柱的兩條母線,過AD做圓柱的截面交下底面于BC,四邊形ABCD是正方形.
(I)求證:BC⊥BE;
(Ⅱ)求四棱錐E-ABCD的體積.

分析 (I)由圓柱母線垂直底面得AE⊥BC,又BC⊥AB,得出BC⊥平面ABE,于是BC⊥BE;
(II)過E作EO⊥AB,則可證EO⊥平面ABCD,設(shè)正方形邊長(zhǎng)為x,求出BE,在Rt△BCE中利用勾股定理列方程解出x,代入棱錐的體積公式計(jì)算.

解答 證明:(I)∵AE是圓柱的母線,
∴AE⊥底面BCFE,∵BC?平面BCFE,
∴AE⊥BC,
∵四邊形ABCD是正方形,
∴BC⊥AB,
又AB?平面ABE,AE?平面ABE,AB∩AE=A,
∴BC⊥平面ABE,∵BE?平面ABE,
∴BC⊥BE.
(II)過E作EO⊥AB于O,
由(I)知BC⊥平面ABE,∵EO?平面ABE,
∴BC⊥EO,又AB?平面ABCD,BC?平面ABCD,AB∩BC=B,
∴EO⊥平面ABCD.
設(shè)正方形ABCD的邊長(zhǎng)為x,則AB=BC=x,
∴BE=$\sqrt{A{B}^{2}-A{E}^{2}}$=$\sqrt{{x}^{2}-4}$,
∵BC⊥BE,∴EC為圓柱底面直徑,即EC=2$\sqrt{7}$.
∵BE2+BC2=EC2,即x2-4+x2=28,解得x=4,
∴BE=2$\sqrt{3}$,EO=$\frac{AE•BE}{AB}=\sqrt{3}$,S正方形ABCD=16,
∴VE-ABCD=$\frac{1}{3}{S}_{正方形ABCD}•EO$=$\frac{1}{3}×16×\sqrt{3}$=$\frac{16\sqrt{3}}{3}$.

點(diǎn)評(píng) 本題考查了線面垂直的判定與性質(zhì),棱錐的體積計(jì)算,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.為了解某社區(qū)居民的家庭年收入與年支出的關(guān)系,隨機(jī)調(diào)查了該社區(qū)5戶家庭,得到如下統(tǒng)計(jì)數(shù)據(jù)表:(單位:萬元)
收入x8.28.610.011.311.9
支出y6.27.58.08.59.8
(1)請(qǐng)畫出上表數(shù)據(jù)的散點(diǎn)圖;(3)試根據(jù)(2)求出的線性回歸方程,預(yù)測(cè)該社區(qū)一戶收入為15萬元家庭年支出為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.某種樹的分枝生長(zhǎng)規(guī)律如圖所示(如前4年分枝數(shù)分別為1,1,2,3),則預(yù)計(jì)第7年樹的分枝數(shù)為( 。
A.8B.12C.13D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.半徑為2的球O中有一內(nèi)接正四棱柱(底面是正方形,側(cè)棱垂直底面),當(dāng)該正四棱柱的側(cè)面積最大時(shí),球的表面積與該正四棱柱的側(cè)面積之差是(  )
A.16($π-\sqrt{3}$)B.16($π-\sqrt{2}$)C.8(2$π-3\sqrt{2}$)D.8(2$π-\sqrt{3}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)P為曲線C:y=x2-2x+3上的點(diǎn),且曲線C在點(diǎn)P處切線傾斜角的取值范圍為[0,$\frac{π}{4}$],則點(diǎn)P橫坐標(biāo)的取值范圍為( 。
A.[-1,-$\frac{1}{2}$]B.[-1,0]C.[0,1]D.[1,$\frac{3}{2}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=(x2-x+1)•ex+2,x∈R
(1)求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)若函數(shù)g(x)=f(x)-k有且只有一個(gè)零點(diǎn),求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知正棱錐P-ABCD中,PA⊥平面ABCD,△PAC為等腰直角三角形,PA=6,底面ABCD為平行四邊形,且∠ABC+∠ADC=90°,E為線段AD的中點(diǎn),F(xiàn)在線段PD上運(yùn)動(dòng),記$\frac{PF}{PD}$=λ.
(1)若λ=$\frac{1}{2}$,證明:平面BEF⊥平面ABCD;
(2)當(dāng)λ=$\frac{1}{3}$時(shí),PA=AB=AC,求三棱錐C-BEF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.設(shè)點(diǎn)A,B分別是x,y軸上的兩個(gè)動(dòng)點(diǎn),AB=1,若$\overrightarrow{BA}=\overrightarrow{AC}$.
(1)求點(diǎn)C的軌跡Γ;
(2)已知直線l:x+4y-2=0,過點(diǎn)D(2,2)作直線m交軌跡Γ于不同的兩點(diǎn)E,F(xiàn),交直線l于點(diǎn)K.問$\frac{|DK|}{|DE|}$+$\frac{|DK|}{|DF|}$的值是否為定值,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.△ABC中,角A、B、C的對(duì)邊長(zhǎng)分別為a、b、c,D是BC的中點(diǎn),若a=4,AD=c-b,則△ABC的面積的最大值為$2\sqrt{3}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案