在極坐標(biāo)系中,點(diǎn)P(1,)到直線(xiàn)l:ρcos(θ+)=上的點(diǎn)的最短距離為_(kāi)_______.
2
[解析] 注意到點(diǎn)P(1,)的直角坐標(biāo)是(0,1),直線(xiàn)l:ρcos(θ+)=的直角坐標(biāo)方程是x-y-3=0,因此點(diǎn)P(1,)到直線(xiàn)l上的點(diǎn)的最短距離,即點(diǎn)P到直線(xiàn)l的距離,等于=2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
某同學(xué)在一次研究性學(xué)習(xí)中發(fā)現(xiàn),以下五個(gè)式子的值都等于同一個(gè)常數(shù):
①sin213°+cos217°-sin13°cos17°;
②sin215°+cos215°-sin15°cos15°;
③sin218°+cos212°-sin18°cos12°;
④sin2(-18°)+cos248°-sin(-18°)cos48°;
⑤sin2(-25°)+cos255°-sin(-25°)cos55°.
(1)試從上述五個(gè)式子中選擇一個(gè),求出這個(gè)常數(shù);
(2)根據(jù)(1)的計(jì)算結(jié)果,將該同學(xué)的發(fā)現(xiàn)推廣為三角恒等式,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
如圖,過(guò)圓E外一點(diǎn)A作一條直線(xiàn)與圓E交于B,C兩點(diǎn),且AB=AC,作直線(xiàn)AF與圓E相切于點(diǎn)F,連接EF交BC于點(diǎn)D,已知圓E的半徑為2,∠EBC=30°.
(1)求AF的長(zhǎng);
(2)求證:AD=3ED.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
在極坐標(biāo)系中,已知點(diǎn)P(2,),則過(guò)點(diǎn)P且平行于極軸的直線(xiàn)的方程是( )
A.ρsinθ=1 B.ρsinθ=
C.ρcosθ=1 D.ρcosθ=
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
在極坐標(biāo)系中,圓ρ=2cosθ的垂直于極軸的兩條切線(xiàn)方程分別為( )
A.θ=0(ρ∈R)和ρcosθ=2
B.θ=(ρ∈R)和ρcosθ=2
C.θ=(ρ∈R)和ρcosθ=1
D.θ=0(ρ∈R)和ρcosθ=1
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
極坐標(biāo)系中,點(diǎn)A在曲線(xiàn)ρ=2sinθ上,點(diǎn)B在曲線(xiàn)ρcosθ=-2上,則|AB|的最小值為_(kāi)_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知圓C1的參數(shù)方程為(φ為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,圓C2的極坐標(biāo)方程為ρ=2cos(θ+).
(1)將圓C1的參數(shù)方程化為普通方程,將圓C2的極坐標(biāo)方程化為直角坐標(biāo)方程;
(2)圓C1、C2是否相交?若相交,請(qǐng)求出公共弦的長(zhǎng);若不相交,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
若存在實(shí)數(shù)x使|x-a|+|x-1|≤3成立,則實(shí)數(shù)a的取值范圍是________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com