8.已知拋物線x2=8y與雙曲線$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{^{2}}$=1(a>0,b>0)的一條漸近線交于點(diǎn)A,若點(diǎn)A到拋物線的準(zhǔn)線的距離為4,則雙曲線的離心率為$\sqrt{5}$.

分析 求出雙曲線的一條漸近線方程,代入拋物線方程,求得交點(diǎn)A的坐標(biāo),求出拋物線的準(zhǔn)線方程,由點(diǎn)到直線的距離公式,計(jì)算結(jié)合離心率公式即可得到所求值.

解答 解:雙曲線$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{^{2}}$=1(a>0,b>0)的一條漸近線方程設(shè)為y=$\frac{a}$x,
代入拋物線x2=8y,可得x=$\frac{8a}$,y=$\frac{8{a}^{2}}{^{2}}$,
拋物線x2=8y的準(zhǔn)線為y=-2,
由題意可得$\frac{8{a}^{2}}{^{2}}$+2=4,
即有b=2a,c=$\sqrt{{a}^{2}+^{2}}$=$\sqrt{5}$a,
即有離心率e=$\frac{c}{a}$=$\sqrt{5}$.
故答案為:$\sqrt{5}$.

點(diǎn)評(píng) 本題考查雙曲線的離心率的求法,注意運(yùn)用漸近線方程和拋物線的性質(zhì),考查運(yùn)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.如圖,在半徑為1,圓心角為90°的直角扇形OAB中,Q為AB上一點(diǎn),點(diǎn)P在扇形內(nèi)(含邊界),且$\overrightarrow{OP}$=t$\overrightarrow{OA}$+(1-t)$\overrightarrow{OB}$(0≤t≤1),則$\overrightarrow{OP}$$•\overrightarrow{OQ}$的最大值為( 。
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{3}{4}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知函數(shù)fn(x)=$\frac{sinnx}{sinx}$(n∈N*),關(guān)于此函數(shù)的說法正確的序號(hào)是①②④
①fn(x)(n∈N*)為周期函數(shù);②fn(x)(n∈N*)有對(duì)稱軸;③($\frac{π}{2}$,0)為fn(x)(n∈N*)的對(duì)稱中心:④|fn(x)|≤n(n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知,點(diǎn)P(x,y)的坐標(biāo)滿足$\left\{\begin{array}{l}{x-y+1≥0}\\{x+y≤6}\\{y-1≥0}\end{array}\right.$設(shè)A(2,0),則|$\overrightarrow{OP}$|cos∠AOP(O為坐標(biāo)原點(diǎn))的最大值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若雙曲線C1:$\frac{x^2}{2}-\frac{y^2}{8}$=1與C2:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的漸近線相同,且雙曲線C2的焦距為4$\sqrt{5}$,則b=( 。
A.2B.4C.6D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的兩條漸近線分別l1,l2,右焦點(diǎn)F.若點(diǎn)F關(guān)于直線l1的對(duì)稱點(diǎn)M在l2上則雙曲線的離心率為( 。
A.3B.2C.$\sqrt{3}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.雙曲線$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1的漸近線方程與圓(x-$\sqrt{3}$)2+(y-1)2=1相切,則此雙曲線的離心率為( 。
A.$\sqrt{5}$B.2C.$\sqrt{3}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一條漸近線方程為y=$\frac{\sqrt{6}}{6}$x,則此雙曲線的離心率為(  )
A.$\frac{\sqrt{42}}{6}$B.$\frac{7}{6}$C.$\frac{\sqrt{5}}{2}$D.$\frac{5}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.如圖所示的數(shù)陣中,用A(m,n)表示第m行的第n個(gè)數(shù),則依此規(guī)律A(8,2)為( 。
A.$\frac{2}{3}$B.$\frac{5}{6}$C.$\frac{7}{12}$D.$\frac{11}{18}$

查看答案和解析>>

同步練習(xí)冊(cè)答案