分析 (1)利用賦值法,即可得出結(jié)論;
(2)用數(shù)學(xué)歸納法證明這個(gè)不等式,先驗(yàn)證n=2時(shí)成立,再假設(shè)n=k時(shí)成立,證明n=k+1時(shí)成立即可.
解答 (1)解:①n=1時(shí),a0+a1+…+a2013=22013,
②n=-1時(shí),a0-a1+…-a2013=0,
∴a1+a3+…+a2011+a2013=22012;
(2)證明:由于|x|≤1,n≥2,n∈N.
當(dāng)n=1時(shí),(1+x)+(1-x)=2,成立
假設(shè)n=k時(shí)成立,即(1+x)k+(1-x)k≤2k成立
當(dāng)n=k+1時(shí),則:(1+x)k+1+(1-x)k+1=(1+x)k×(1+x)+(1-x)k×(1-x)=(1+x)k+x(1+x)k+(1-x)k-x(1-x)k≤2k+x[(1+x)k-(1-x)k]
=2k+x(2Ck1x+2Ck3x3+…)=2k+(2Ck1+2Ck3+…)=2k+2k=2k+1,
故當(dāng)n=k+1時(shí),不等式也成立
綜上知:(1+x)n+(1-x)n≤2n,其中|x|≤1,n∈N*成立,
所以fn(x)+fn(-x)≤2n(n∈N*)
點(diǎn)評(píng) 本題考查二項(xiàng)式系數(shù)和問題,考查用數(shù)學(xué)歸納法證明不等式,求解本問題的關(guān)鍵是掌握數(shù)學(xué)歸納法證明的原理,先證初始值成立,再假設(shè)n=k時(shí)成立,然后證n=k+1時(shí)成立.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|-1<x<3} | B. | {x|-3<x<1} | C. | {x|x<-1或x>3} | D. | {x|x>-3或x>1} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
x | 1 | 2 | 3 |
P(ξ=x) | ! | ? | ! |
A. | $\frac{2}{3}$ | B. | 2 | C. | 7 | D. | $\frac{7}{9}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{3}{5}$ | B. | $\frac{1}{5}$ | C. | -$\frac{6}{5}$ | D. | $\frac{3}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ¬p:?x∈R,2x2+1≤0 | B. | ¬p:?x∈R,2x2+1≤0 | C. | ¬p:?x∈R,2x2+1<0 | D. | ¬p:?x∈R,2x2+1<0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com