6.“x2-2x<0”是“l(fā)og2(2-x)<2”的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

分析 求出不等式的解集,根據(jù)集合的包含關(guān)系判斷即可.

解答 解:由x2-2x<0,解得:0<x<2,
由log2(2-x)<2,解得:-2<x<2,
故“x2-2x<0”是“l(fā)og2(2-x)<2”的充分不必要條件,
故選:A.

點(diǎn)評(píng) 本題考查了充分必要條件,考查解不等式問(wèn)題,是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.函數(shù)y=Asin(ωx+φ)(A>0,ω>0)在x∈(0,7π)內(nèi)取到一個(gè)最大值和一個(gè)最小值,且當(dāng)x=π時(shí),y有最大值3,當(dāng)x=6π時(shí),y有最小值-3.
(1)求此函數(shù)解析式;
(2)寫(xiě)出該函數(shù)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.直線x-y-2=0 與x-y+1=0之間的距離是$\frac{{3\sqrt{2}}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.設(shè)復(fù)數(shù)z=1+i,則復(fù)數(shù)$\frac{2}{z}$+z2的共軛復(fù)數(shù)為1-i.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.下面有5個(gè)命題:
①函數(shù)y=sin4x-cos4x的最小正周期是π;
②終邊在y軸上的角的集合是{α|α=$\frac{kπ}{2}$,k∈Z};
③在同一坐標(biāo)系中,函數(shù)y=sinx的圖象和函數(shù)y=x的圖象有三個(gè)公共點(diǎn);
④函數(shù)y=tanx在其定義域上是單調(diào)遞增函數(shù);  ⑤函數(shù)y=sin(x-$\frac{π}{2}$)是偶函數(shù);
則正確命題的序號(hào)是①⑤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.在△ABC 中,內(nèi)角 A,B,C 的對(duì)邊分別是 a,b,c,若 c=2a,bsinB-asin A=$\frac{1}{2}$asinC,則sinB=$\frac{\sqrt{7}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知α∥β,平面α與平面β的法向量分別為$\overrightarrow{m}$,$\overrightarrow{n}$,且$\overrightarrow{m}$=(1,-2,5),$\overrightarrow{n}$=(-3,6,z),則z=-15.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.函數(shù)f(x)=2x3-6x+k,x∈R.
(1)當(dāng)k=5時(shí),求函數(shù)f(x)在點(diǎn)(2,f(2))處的切線方程.
(2)若函數(shù)f(x)=2x3-6x+k在R上只有一個(gè)零點(diǎn),求常數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知$\overrightarrow{a}$=(2cosx,sinx),$\overrightarrow$=(cosx,sinx-$\sqrt{3}$cosx),設(shè)函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$.
(1)求f(x)圖象的對(duì)稱(chēng)軸方程;
(2)求f(x)在[$\frac{5π}{12}$,π]上的值域.

查看答案和解析>>

同步練習(xí)冊(cè)答案