分析 (1)根據(jù)題意,函數(shù)的最值可以確定A,根據(jù)在x∈(0,7π)內(nèi)取到一個(gè)最大值和一個(gè)最小值,且當(dāng)x=π時(shí),y有最大值3,當(dāng)x=6π時(shí),y有最小值-3,可以確定函數(shù)的周期,從而求出ω的值和φ的值,從而求得函數(shù)的解析式;
(2)令 2kπ-$\frac{π}{2}$≤$\frac{1}{5}$x+$\frac{3π}{10}$≤2kπ+$\frac{π}{2}$,解此不等式,即可求得函數(shù)的單調(diào)遞增區(qū)間;
解答 解:(1)∵當(dāng)x=π時(shí),y有最大值3,當(dāng)x=6π時(shí),y有最小值-3.
∴A=$\frac{1}{2}$[3-(-3)]=3,$\frac{T}{2}$=5π,
∴T=10π=$\frac{2π}{ω}$,
∴ω=$\frac{2π}{10π}$=$\frac{1}{5}$,
∵當(dāng)x=π時(shí),y有最大值3,
∴$\frac{1}{5}$π+φ=$\frac{π}{2}$,
∴φ=$\frac{3π}{10}$,
∴y=3sin($\frac{1}{5}$x+$\frac{3π}{10}$),
(2)令 2kπ-$\frac{π}{2}$≤$\frac{1}{5}$x+$\frac{3π}{10}$≤2kπ+$\frac{π}{2}$,k∈Z,
得:10kπ-4π≤x≤10kπ+π,k∈Z,
故函數(shù)的單調(diào)遞增區(qū)間為:{x|10kπ-4π≤x≤10kπ+π k∈Z}.
點(diǎn)評(píng) 本題考查根據(jù)y=Asin(ωx+φ)的圖象求函數(shù)的解析式以及求函數(shù)的單調(diào)區(qū)間,考查靈活應(yīng)用知識(shí)分析解決問題的能力和運(yùn)算能力,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com