分析 根據(jù)線面垂直的判定定理,只要能證明和兩條交線垂直,即可證明線面垂直.
解答 解:因?yàn)槿切蔚娜我鈨蛇吺窍嘟坏模寓倏芍C明線面垂直.
因?yàn)樘菪蔚纳舷聝蛇吺瞧叫械,此時(shí)不相交,所以②不一定能保證線面垂直.
因?yàn)閳A的任意兩條直徑必相交,所以③可以證明線面垂直.
若直線垂直于正六邊形的兩個(gè)對(duì)邊,此時(shí)兩個(gè)對(duì)邊是平行的,所以④不一定能保證線面垂直.
故答案為:①③
點(diǎn)評(píng) 本題主要考查線面垂直的判定,在線面垂直中必須要求是和平面內(nèi)的兩條交線都垂直才可以證明下面垂直.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [$\frac{π}{3}$,π) | B. | ($\frac{π}{2},\frac{2π}{3}$] | C. | [$\frac{π}{3},\frac{π}{2}$) | D. | (0,$\frac{π}{3}$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 3 | B. | 2$\sqrt{3}$ | C. | 4 | D. | 2$\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{3n+2}$ | B. | $\frac{1}{3n}$+$\frac{1}{3n+1}$ | C. | $\frac{1}{3n+1}$+$\frac{1}{3n+2}$ | D. | $\frac{1}{3n}$+$\frac{1}{3n+1}$+$\frac{1}{3n+2}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com