14.已知曲線$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1和ax+by+1=0(ab≠0),在同一坐標(biāo)系中它們的圖形可能是( 。
A.B.C.D.

分析 可以以直線的方程為主進(jìn)行討論,根據(jù)直線的位置關(guān)系得出參數(shù)a,b的符號(hào),再由此關(guān)系判斷曲線的形狀,不出現(xiàn)矛盾者即是所求的正確選項(xiàng)

解答 解:A選項(xiàng)中,直線的斜率大于0,故系數(shù)a,b的符號(hào)相反,此時(shí)曲線應(yīng)是雙曲線,故不對(duì);
B選項(xiàng)中直線的斜率小于0,故系數(shù)a,b的符號(hào)相同且都為負(fù),此時(shí)曲線不存在,故不對(duì);
C選項(xiàng)中,直線斜率為正,故系數(shù)a,b的符號(hào)相反,且a正,b負(fù),此時(shí)曲線應(yīng)是焦點(diǎn)在x軸上的雙曲線,圖形符合結(jié)論,可選;
D選項(xiàng)中不正確,由C選項(xiàng)的判斷可知D不正確.
故選:C

點(diǎn)評(píng) 本題考查直線與圓錐曲線的位置關(guān)系,解題的關(guān)鍵是根據(jù)直線的位置關(guān)系判斷出兩個(gè)參數(shù)的符號(hào),以此確定曲線的類型,再結(jié)合選項(xiàng)中圖形的形狀,得出正確答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.若x∈[-$\frac{5π}{12}$,-$\frac{π}{3}$],則y=tan(x+$\frac{2π}{3}$)-tan(x+$\frac{π}{6}$)+cos(x+$\frac{π}{6}$)的最大值是$\frac{11\sqrt{3}}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,E為PD的中點(diǎn),F(xiàn)在AD上且∠FCD=30°.
(1)求證:CE∥平面PAB;
(2)若PA=2AB=2,求四面體P-ACE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.橢圓的一焦點(diǎn)與兩頂點(diǎn)為等邊三角形的三個(gè)頂點(diǎn),則橢圓的長軸長是短軸長的(  )
A.$\sqrt{3}$倍B.2倍C.$\sqrt{2}$倍D.$\frac{3}{2}$倍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.在平面直角坐標(biāo)系xOy中,橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左、右頂點(diǎn)分別為A,B,離心率為$\frac{{\sqrt{3}}}{3}$,直線l:x=3為橢圓的一條準(zhǔn)線.
(1)求橢圓的方程;
(2)若$C(\sqrt{3},\sqrt{,3})$,$D(-\sqrt{3},\sqrt{,3})$,Q為橢圓上位于x軸上方的動(dòng)點(diǎn),直線DM•CN,BQ分別交直線m于點(diǎn)M,N.
(i)當(dāng)直線AQ的斜率為$\frac{1}{2}$時(shí),求△AMN的面積;
(ii)求證:對(duì)任意的動(dòng)點(diǎn)Q,DM•CN為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知周長為16的△ABC的兩頂點(diǎn)與橢圓M的兩個(gè)焦點(diǎn)重合,另一個(gè)頂點(diǎn)恰好在橢圓M上,則下列橢圓中符合橢圓M條件的是( 。
A.$\frac{x^2}{25}+\frac{y^2}{16}=1$B.$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1C.$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{9}$=1D.$\frac{{x}^{2}}{9}$+$\frac{{x}^{2}}{4}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.正四棱錐(底面是正方形,頂點(diǎn)在底面上的射影是底面中心)S-ABCD的底面邊長為4,高為4,點(diǎn)E、F、G分別為SD,CD,BC的中點(diǎn),動(dòng)點(diǎn)P在正四棱錐的表面上運(yùn)動(dòng),并且總保持PG∥平面AEF,動(dòng)點(diǎn)P的軌跡的周長為( 。
A.$\sqrt{5}$+$\sqrt{6}$B.2$\sqrt{5}$+2$\sqrt{6}$C.$\sqrt{5}$+$\frac{{\sqrt{6}}}{2}$D.2$\sqrt{5}$+$\sqrt{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知點(diǎn)A(a,b)在y=-x2+3lnx的圖象上,點(diǎn)B(m,n)在y=x+2的圖象上,則(a-m)2+(b-n)2的最小值為( 。
A.$\sqrt{2}$B.2C.$2\sqrt{2}$D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.下列函數(shù)中,定義域?yàn)閇1,+∞)的是( 。
A.y=$\sqrt{x-1}$+$\sqrt{x+1}$B.y=(x-1)2C.y=($\frac{1}{2}$)x-1D.y=ln(x-1)

查看答案和解析>>

同步練習(xí)冊(cè)答案