【題目】2018年森林城市建設(shè)座談會(huì)在深圳舉行.會(huì)上宣讀了國(guó)家森林城市稱(chēng)號(hào)批準(zhǔn)決定,并舉行授牌儀式,滕州市榜上有名,被正式批準(zhǔn)為“國(guó)家森林城市”.為進(jìn)一步推進(jìn)國(guó)家森林城市建設(shè),我市準(zhǔn)備制定生態(tài)環(huán)境改造投資方案,該方案要求同時(shí)具備下列兩個(gè)條件:
①每年用于風(fēng)景區(qū)改造的費(fèi)用隨每年改造生態(tài)環(huán)境總費(fèi)用增加而增加;②每年用于風(fēng)景區(qū)改造的費(fèi)用不得低于每年改造生態(tài)環(huán)境總費(fèi)用的15%,但不得高于每年改造生態(tài)環(huán)境總費(fèi)用的25%.若每年改造生態(tài)環(huán)境的總費(fèi)用至少1億元,至多4億元;請(qǐng)你分析能否采用函數(shù)模型作為生態(tài)環(huán)境改造投資方案.
【答案】能采用函數(shù)模型作為生態(tài)環(huán)境改造投資方案,理由見(jiàn)解析
【解析】
利用導(dǎo)數(shù)證得在上遞增,滿足條件①.構(gòu)造函數(shù),利用導(dǎo)數(shù)求得滿足條件②.由此判斷出能采用函數(shù)模型作為生態(tài)環(huán)境改造投資方案.
∵,.
∴當(dāng)時(shí),函數(shù)是增函數(shù),滿足條件①.
設(shè),.
則.
令,得.
當(dāng)變化時(shí),,的變化情況,如下表:
1 | 2 | 4 | |||
- | 0 | + | |||
21% | 遞減 | 極小值16% | 遞增 | 24% |
當(dāng)時(shí),有最小值為,
當(dāng)時(shí),,
當(dāng)時(shí),,滿足條件②.
所以能采用函數(shù)模型作為生態(tài)環(huán)境改造投資方案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】學(xué)生考試中答對(duì)但得不了滿分的原因多為答題不規(guī)范,具體表現(xiàn)為:解題結(jié)果正確,無(wú)明顯推理錯(cuò)誤,但語(yǔ)言不規(guī)范、缺少必要文字說(shuō)明、卷面字跡不清、得分要點(diǎn)缺失等,記此類(lèi)解答為“類(lèi)解答”.為評(píng)估此類(lèi)解答導(dǎo)致的失分情況,某市教研室做了一項(xiàng)試驗(yàn):從某次考試的數(shù)學(xué)試卷中隨機(jī)抽取若干屬于“類(lèi)解答”的題目,掃描后由近百名數(shù)學(xué)老師集體評(píng)閱,統(tǒng)計(jì)發(fā)現(xiàn),滿分12分的題,閱卷老師所評(píng)分?jǐn)?shù)及各分?jǐn)?shù)所占比例大約如下表:
教師評(píng)分(滿分12分) | 11 | 10 | 9 |
各分?jǐn)?shù)所占比例 |
某次數(shù)學(xué)考試試卷評(píng)閱采用“雙評(píng)+仲裁”的方式,規(guī)則如下:兩名老師獨(dú)立評(píng)分,稱(chēng)為一評(píng)和二評(píng),當(dāng)兩者所評(píng)分?jǐn)?shù)之差的絕對(duì)值小于等于1分時(shí),取兩者平均分為該題得分;當(dāng)兩者所評(píng)分?jǐn)?shù)之差的絕對(duì)值大于1分時(shí),再由第三位老師評(píng)分,稱(chēng)之為仲裁,取仲裁分?jǐn)?shù)和一、二評(píng)中與之接近的分?jǐn)?shù)的平均分為該題得分;當(dāng)一、二評(píng)分?jǐn)?shù)和仲裁分?jǐn)?shù)差值的絕對(duì)值相同時(shí),取仲裁分?jǐn)?shù)和前兩評(píng)中較高的分?jǐn)?shù)的平均分為該題得分.(假設(shè)本次考試閱卷老師對(duì)滿分為12分的題目中的“類(lèi)解答”所評(píng)分?jǐn)?shù)及比例均如上表所示,比例視為概率,且一、二評(píng)與仲裁三位老師評(píng)分互不影響).
(1)本次數(shù)學(xué)考試中甲同學(xué)某題(滿分12分)的解答屬于“類(lèi)解答”,求甲同學(xué)此題得分的分布列及數(shù)學(xué)期望;
(2)本次數(shù)學(xué)考試有6個(gè)解答題,每題滿分均為12分,同學(xué)乙6個(gè)題的解答均為“類(lèi)解答”,記該同學(xué)6個(gè)題中得分為的題目個(gè)數(shù)為,,,計(jì)算事件“”的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】高鐵、網(wǎng)購(gòu)、移動(dòng)支付和共享單車(chē)被譽(yù)為中國(guó)的“新四大發(fā)明”,彰顯出中國(guó)式創(chuàng)新的強(qiáng)勁活力.某移動(dòng)支付公司從我市移動(dòng)支付用戶中隨機(jī)抽取100名進(jìn)行調(diào)查,得到如下數(shù)據(jù):
每周移動(dòng)支付次數(shù) | 1次 | 2次 | 3次 | 4次 | 5次 | 6次及以上 |
男 | 10 | 8 | 7 | 3 | 2 | 15 |
女 | 5 | 4 | 6 | 4 | 6 | 30 |
合計(jì) | 15 | 12 | 13 | 7 | 8 | 45 |
(Ⅰ)把每周使用移動(dòng)支付超過(guò)3次的用戶稱(chēng)為“移動(dòng)支付活躍用戶”,能否在犯錯(cuò)誤概率不超過(guò)0.005的前提下,認(rèn)為是否為“移動(dòng)支付活躍用戶”與性別有關(guān)?
(Ⅱ)把每周使用移動(dòng)支付6次及6次以上的用戶稱(chēng)為“移動(dòng)支付達(dá)人”,視頻率為概率,在我市所有“移動(dòng)支付達(dá)人”中,隨機(jī)抽取4名用戶.
①求抽取的4名用戶中,既有男“移動(dòng)支付達(dá)人”又有女“移動(dòng)支付達(dá)人”的概率;
②為了鼓勵(lì)男性用戶使用移動(dòng)支付,對(duì)抽出的男“移動(dòng)支付達(dá)人”每人獎(jiǎng)勵(lì)300元,記獎(jiǎng)勵(lì)總金額為,求的分布列及數(shù)學(xué)期望.
附公式及表如下:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓()的離心率為,橢圓上一點(diǎn)到橢圓兩焦點(diǎn)距離之和為,如圖,為坐標(biāo)原點(diǎn),平行與的直線l交橢圓于不同的兩點(diǎn)、.
(1)求橢圓方程;
(2)若的橫坐標(biāo)為,求面積的最大值;
(3)當(dāng)在第一象限時(shí),直線,交x軸于,,若PE=PF,求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè),函數(shù).
(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)在區(qū)間上有唯一零點(diǎn),試求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知是數(shù)列的前項(xiàng)和,且,,數(shù)列中,,且.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),求的前項(xiàng)和;
(3)證明:對(duì)一切,
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】己知點(diǎn)A是拋物線的對(duì)稱(chēng)軸與準(zhǔn)線的交點(diǎn),點(diǎn)B為拋物線的焦點(diǎn),P在拋物線上且滿足,當(dāng)取最大值時(shí),點(diǎn)P恰好在以A、B為焦點(diǎn)的雙曲線上,則雙曲線的離心率為
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知.
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若對(duì)任意,都有,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線C:=2px經(jīng)過(guò)點(diǎn)(1,2).過(guò)點(diǎn)Q(0,1)的直線l與拋物線C有兩個(gè)不同的交點(diǎn)A,B,且直線PA交y軸于M,直線PB交y軸于N.
(Ⅰ)求直線l的斜率的取值范圍;
(Ⅱ)設(shè)O為原點(diǎn),,,求證:為定值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com