3.畫出不等式組$\left\{\begin{array}{l}{x-y+5≥0}\\{x+y≥0}\\{x≤3}\end{array}\right.$表示的平面區(qū)域.

分析 畫出滿足條件的平面區(qū)域即可.

解答 解:畫出滿足條件的平面區(qū)域,如圖示:

點評 本題考查了關(guān)于二元一次方程組的平面區(qū)域問題,是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.實數(shù)x,y滿足$\left\{\begin{array}{l}x-y+1≥0\\ x+y-3≤0\\ x+3y-3≥0\end{array}\right.$,則z=x+y+1的最大值為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知sinα=0.80,α∈(0,$\frac{π}{2}$),求sin2α,cos2α的值(保留兩個有效數(shù)字).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.計算下列各排列數(shù):
(1)a,b,c,d,e中取出4個元素的排列中,a不在首位的所有排列;
(2)a,b,c,d,e中取出4個元素的排列中,a不在首位且b不在末位的所有排列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.某學(xué)校一天共排7節(jié)課(其中上午4節(jié)、下午3節(jié)),某教師某天高三年級1班和2班各有一節(jié)課,但他要求不能連排2節(jié)課(其中上午第4節(jié)和下午第1節(jié)不算連排),那么該教師這一天的課的所有可能的排法種數(shù)共有240種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知實數(shù)x、y滿足$\sqrt{x+3y}$$•\sqrt{x-3y}$=3,則x-|y|的最小值是2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=lnx-ax2-a+2(a∈R,a為常數(shù))
(1)討論函數(shù)f(x)的單調(diào)性;
(2)若存在x0∈(0,1],使得對任意的a∈(-2,0],不等式mea+f(x0)>0(其中e為自然對數(shù)的底數(shù))都成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=m-|2x+1|-|2x-3|在R上存在零點.
(1)求實數(shù)m的取值范圍;
(2)當(dāng)m為最小值時,若$\frac{1}{m\sqrt{a}}$+$\frac{1}{2m\sqrt}$+$\frac{1}{3m\sqrt{c}}$=1,求證:$\frac{1}{9}$$\sqrt{a}$+$\frac{2}{9}$$\sqrt$+$\frac{1}{3}$$\sqrt{c}$≥$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.15名選舉人對5名侯選人進行無記名投票選舉,若選舉人可以投一個至五個候選人的票,也可以棄權(quán),則不同的選舉方法共有( 。
A.215B.275C.25D.225

查看答案和解析>>

同步練習(xí)冊答案