4.已知實數(shù)x,y滿足$\left\{{\begin{array}{l}{x-y-1≥0}\\{x+y-3≥0}\\{y≤3}\end{array}}\right.$則2x+y的最小值為( 。
A.11B.3C.4D.2

分析 畫出可行域,設(shè)z=2x+y,利用目標函數(shù)的幾何意義其最小值.

解答 解:由已知得到平面區(qū)域如圖:設(shè)z=2x+y,則y=-2x+z,
由它在y軸的截距最小,得到z最小,
由圖可知當直線過A(0,3)時,z 最小,所以最小值為3;
故選:B.

點評 本題考查了簡單線性規(guī)劃問題;只要正確畫出可行域,利用目標函數(shù)的幾何意義求最值即可.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

14.如圖,在四棱錐P-ABCD中,E是PC的中點,底面ABCD為矩形,AB=4,AD=2,△PAD為正三角形,且平面PAD⊥平面ABCD,平面ABE與棱PD交于點F,平面PCD與平面PAB交于直線l.
(1)求證:l∥EF;
(2)求三棱錐P-AEF的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$+$\overrightarrow$|=2$\sqrt{3}$,$\overrightarrow{a}$•$\overrightarrow$=2,則|$\overrightarrow{a}$-$\overrightarrow$|=( 。
A.8B.4C.2D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知過點A(0,1)的橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左右焦點分別為F1、F2,B為橢圓上的任意一點,且$\sqrt{3}$|BF1|,|F1F2|,$\sqrt{3}$|BF2|成等差數(shù)列.
(1)求橢圓C的標準方程;
(2)直線l:y=k(x+2)交橢圓于P,Q兩點,若點A始終在以PQ為直徑的圓外,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.若函數(shù)f(x)=sin(ωx)(ω>0)在$[{\frac{π}{4},\frac{π}{2}}]$上為減函數(shù),則ω的取值范圍為( 。
A.(0,3]B.(0,4]C.[2,3]D.[2,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.已知復數(shù)$z=\frac{1-i}{i}$,則|z|=$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知函數(shù)f(x)=eax-x.
(Ⅰ)若曲線y=f(x)在(0,f(0))處的切線l與直線x+2y+3=0垂直,求a的值;
(Ⅱ)當a≠1時,求證:存在實數(shù)x0使f(x0)<1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知函數(shù)f(x)=$\frac{1}{3}{x^3}+\frac{1}{2}{x^2}$-2x+1.
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)當0<a≤$\frac{5}{2}$時,求函數(shù)f(x)在區(qū)間[-a,a]上的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.若實數(shù)x,y,z滿足4x+3y+12z=1,求x2+y2+z2的最小值.

查看答案和解析>>

同步練習冊答案