分析 運(yùn)用向量的加減運(yùn)算和向量垂直的條件:數(shù)量積為0,解方程可得m,再由向量模的公式,計(jì)算即可得到所求值.
解答 解:向量$\overrightarrow a=({1,2m}),\overrightarrow b=({m+1,1}),\overrightarrow c=({2,m})$,
若$({\overrightarrow a+\overrightarrow c})$⊥$\overrightarrow b$,
可得$\overrightarrow$•($\overrightarrow{a}$+$\overrightarrow{c}$)=0,
即有(m+1,1)•(3,3m)=0,
即為3(m+1)+3m=0,
解得m=-$\frac{1}{2}$,
則$|{\overrightarrow a}|$=$\sqrt{{1}^{2}+(-1)^{2}}$=$\sqrt{2}$.
故答案為:$\sqrt{2}$.
點(diǎn)評(píng) 本題考查向量的數(shù)量積的坐標(biāo)表示和向量垂直的條件:數(shù)量積為0,以及向量模的計(jì)算,考查運(yùn)算能力,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0.88 | B. | 0.90 | C. | 0.92 | D. | 0.95 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | $\frac{\sqrt{6}}{2}$ | D. | $\frac{\sqrt{6}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -6 | B. | -2 | C. | 2 | D. | 6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 函數(shù)y=x+$\frac{1}{x}$的最小值為2 | B. | 函數(shù)y=$\frac{{x}^{2}+3}{\sqrt{{x}^{2}+2}}$的最小值為2 | ||
C. | 函數(shù)y=2-x-$\frac{4}{x}$(x>0)的最大值為-2 | D. | 函數(shù)y=2-x-$\frac{4}{x}$(x>0)的最小值為-2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com