圓的方程為x2+y2-6x-8y=0,過坐標(biāo)原點(diǎn)作長(zhǎng)為8的弦,求弦所在的直線方程.
分析:求出圓心,求出半徑,設(shè)直線方程,注意斜率存在時(shí)設(shè)為k,用圓心到直線的距離公式,求出k的值可得直線方程.
斜率不存在時(shí)直線為x=0,只需驗(yàn)證弦長(zhǎng)是否是8即可,是則此直線也符合要求.
解答:解:x2+y2-6x-8y=0即(x-3)2+(y-4)2=25,斜率存在時(shí)設(shè)所求直線為y=kx.
∵圓半徑為5,圓心M(3,4)到該直線距離為3,∴d=
|3k-4|
k2+1
=3

∴9k2-24k+16=9(k2+1),∴k=
7
24
.∴所求直線為y=
7
24
x
;
當(dāng)斜率不存在是直線為x=0,驗(yàn)證其弦長(zhǎng)為8,所以x=0也是所求直線.故所求直線為:y=
7
24
x
或x=0.
點(diǎn)評(píng):本題考查直線和圓的位置關(guān)系,注意設(shè)直線方程時(shí),斜率不存在的情況,否則容易出錯(cuò).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知圓的方程為x2+y2-6x-8y=0;a1,a2,…,a11是該圓過點(diǎn)(3,5)的11條弦的長(zhǎng),若數(shù)列a1,a2,…,a11是等差數(shù)列,則數(shù)列a1,a2,…,a11的公差的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果圓的方程為x2+y2+kx+2y+k2=0,則當(dāng)圓的面積最大時(shí),圓心為( 。
A、(-1,1)B、(-1,0)C、(0,-1)D、(1,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

13、圓(x-2)2+(y-2)2=7關(guān)于直線x+y=2對(duì)稱的圓的方程為
x2+y2=7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

6、以拋物線y2=4x的焦點(diǎn)為圓心,且過坐標(biāo)原點(diǎn)的圓的方程為
x2+y2-2x=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圓x2+y2+2x-2y+1=0關(guān)于直線x-y=0對(duì)稱的圓的方程為
x2+y2-2x+2y+1=0
x2+y2-2x+2y+1=0

查看答案和解析>>

同步練習(xí)冊(cè)答案