分析 (1)推導出AC⊥BC,CF⊥AB,CF⊥EA,從而CF⊥平面EABD,由此能證明CF⊥EF.
(2)連結DF,推導出DF⊥EF,DF⊥CF,從而DF⊥平面EFC,進而DF為點D到平面CEF的距離,由此能求出點D到平面CEF的距離.
解答 證明:(1)∵AC=3$\sqrt{2}$.BC=3,AC⊥BC,∴AB=3$\sqrt{3}$,
∵AF=2FB,∴FB=$\sqrt{3}$,
又cosB=$\frac{BC}{AB}$=$\frac{3}{3\sqrt{3}}$=$\frac{1}{\sqrt{3}}$,
∴CF2=BC2+BF2-2BC×BFcosB=6,
∵CF2+BF2=BC2,∴CF⊥AB,
∵EA⊥平面ABC,CF?平面ABC,∴CF⊥EA,
∵EA∩AB=A,∴CF⊥平面EABD,∴CF⊥EF.
解:(2)連結DF,在Rt△EAF中,EF=$\sqrt{A{E}^{2}+A{F}^{2}}$=$\sqrt{4+12}$=4,
在Rt△DBF中,DF=$\sqrt{D{B}^{2}+B{F}^{2}}$=$\sqrt{9+3}$=2$\sqrt{3}$,
在直角梯形EABD中,ED=$\sqrt{A{B}^{2}+(DB-AE)^{2}}$=$\sqrt{27+1}$=2$\sqrt{7}$,
∵ED2=EF2+DF2,∴DF⊥EF,
∴CF⊥平面EABD,∴DF⊥CF,
∵EF∩DF=F,∴DF⊥平面EFC,
∴DF為點D到平面CEF的距離,
∴點D到平面CEF的距離DF=2$\sqrt{3}$.
點評 本題考查線線垂直的證明,考查點到平面的距離的求法,考查空間中線線、線面、面面間的位置關系等基礎知識,考查空間想象能力、運算求解能力、推理論證能力,考查化歸與轉化思想、數(shù)形結合思想,考查創(chuàng)新意識、應用意識,是中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-∞,1) | B. | $[{\frac{1}{4},+∞})$ | C. | $[{\frac{3}{4},+∞})$ | D. | $({-∞,\frac{3}{4}}]$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{{\sqrt{3}}}{2}$ | B. | $\frac{{\sqrt{5}}}{5}$ | C. | $\frac{{\sqrt{3}}}{3}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | a<b<c | B. | b<a<c | C. | a<c<b | D. | b<c<a |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com