14.給出以下四個說法:
①繪制頻率分布直方圖時,各小長方形的面積等于相應(yīng)各組的組距;
②在刻畫回歸模型的擬合效果時,R2的值越大,說明擬合的效果越好;
③設(shè)隨機變量ξ服從正態(tài)分布N(4,22),則P(ξ>4)=$\frac{1}{2}$;
④對分類變量X與Y,若它們的隨機變量K2的觀測值k越小,則判斷“X與Y有關(guān)系”的犯錯誤的概率越;
其中正確的說法是②③.

分析 ①由繪制頻率分布直方圖時,各小長方形的面積等于相應(yīng)各組的頻率,即可判斷;
②根據(jù)R2的性質(zhì)進行判斷.
③設(shè)隨機變量ξ服從正態(tài)分布N(4,22),利用對稱性可得結(jié)論;
④對分類變量X與Y,它們的隨機變量K2的觀測值k來說,k越大,“X與Y有關(guān)系”的把握程度越大,可得結(jié)論.

解答 解:①繪制頻率分布直方圖時,各小長方形的面積等于相應(yīng)各組的頻率,故①錯誤;
②在刻畫回歸模型的擬合效果時,R2的值越大,說明擬合的效果越好;故②正確,
③設(shè)隨機變量ξ服從正態(tài)分布N(4,22),則函數(shù)圖象關(guān)于x=4對稱,則P(ξ>4)=$\frac{1}{2}$;故③正確,
④對分類變量X與Y,它們的隨機變量K2的觀測值k來說,k越大,“X與Y有關(guān)系”的把握程度越大則判斷“X與Y有關(guān)系”的犯錯誤的概率越小,故④錯誤,
故答案為:②③

點評 本題主要考查命題的真假判斷,涉及統(tǒng)計的基礎(chǔ)知識:頻率分布直方圖和線性回歸及分類變量X,Y的關(guān)系,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知$\frac{cos2x}{\sqrt{2}cos(x+\frac{π}{4})}$=$\frac{1}{5}$,則sin2x=( 。
A.-$\frac{24}{25}$B.-$\frac{4}{5}$C.$\frac{24}{25}$D.$\frac{2\sqrt{5}}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.甲、乙、丙三位同學(xué)相互傳球,第一次由甲將球傳出去,每次傳球時,傳球者將球等可能地傳給另外2個人中的任何1人,經(jīng)過3次傳球后,球仍在甲手中的概率是( 。
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知定義在R上的奇函數(shù)f(x)滿足f(x+1)=f(x-1),數(shù)列{an}的前n項和為Sn,且Sn=2an+2,則f(an)=( 。
A.0B.0或1C.-1或0D.1或-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.在(x2+x-1)5的展開式中含x5的項的系數(shù)是11.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.某校進行一次分層抽樣調(diào)查,結(jié)果如下表實數(shù),則表中“?”出的數(shù)字為( 。
高一高二高三總?cè)藬?shù)
人數(shù)800500?
樣本人數(shù)120380
A.1900B.1600C.1800D.1700

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.△ABC的外接圓半徑為2,a=2$\sqrt{3}$,則A=(  )
A.30°B.60°C.60°或120°D.30°或150°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.“五一”黃金周將至,小明一家5口決定外出游玩,購買的車票分布如圖:
窗口  6排A座  6排B座  6排C座  走廊   6排D座   6排E座   窗口
其中爺爺喜歡走動,需要坐靠近走廊的位置;媽媽需照顧妹妹,兩人必須坐在一起,則座位的安排方式一共有16種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.下列命題正確的是(  )
A.“x<1”是“x2-3x+2>0”的必要不充分條件
B.命題“若x2-3x+2=0,則x=2”的否命題為“若x2-3x+2=0,則x≠2
C.若p∧q為假命題,則p,q均為假命題
D.對于命題p:?x∈R,使得x2+x-1<0,則?p:?x∈R,均有x2+x-1≥0

查看答案和解析>>

同步練習冊答案