8.已知cosα-sinα=-$\frac{\sqrt{3}}{2}$,則sinα-cosα的值為$\frac{\sqrt{3}}{2}$.

分析 直接利用已知條件求解即可.

解答 解:cosα-sinα=-$\frac{\sqrt{3}}{2}$,則sinα-cosα的值為:$\frac{\sqrt{3}}{2}$.
故答案為:$\frac{\sqrt{3}}{2}$.

點(diǎn)評(píng) 本題考查三角函數(shù)的化簡(jiǎn)求值,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.f(x)=asinx+bcosx,當(dāng)f($\frac{π}{3}$)=1且f(x)的最小值為k時(shí),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.(1)判斷下列各角是第幾象限的角,并寫(xiě)出與各角終邊都相同的角的集合:
①75°;
②195°
(2)判斷下列各三角函數(shù)值的正負(fù)號(hào):
①sin168°;
②cos(-600°);
③tan(-105°)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知x,y,z為實(shí)數(shù),且x+y+z=5,xy+yz+zx=3,則z的取值范圍為$[-1,\frac{13}{3}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.對(duì)于復(fù)數(shù)z=a+bi(a、b∈R,i為虛數(shù)單位),定義‖z‖=|a|+|b|,給出下列命題:
①對(duì)任何復(fù)數(shù),都有‖z‖≥0,等號(hào)成立的充要條件是z=0;
②‖z‖=‖$\overline{z}$‖;③‖z1‖=‖z2‖,則z1=±z2;
④對(duì)任何復(fù)數(shù)z1,z2,z3,不等式‖z1-z3‖≤‖z1-z2‖+‖z2-z3‖恒成立,
其中真命題的個(gè)數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.把4個(gè)男生和4個(gè)女生分成4個(gè)小組,到4個(gè)不同的單位參加崗位實(shí)習(xí),每個(gè)小組要有男女學(xué)生,有多少種不同的分配方案?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知平面向量$\overrightarrow{a}$=(x,2),$\overrightarrow$=(-x,x+4).
(1)求|$\overrightarrow$|的最小值;
(2)若$\overrightarrow{a}$=λ$\overrightarrow$(λ為實(shí)數(shù)),求$\overrightarrow{a}$-$\overrightarrow$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.設(shè)函數(shù)f(x)=xlna-x2-ax(a>0,a≠1).
(1)當(dāng)a=e時(shí),求函數(shù)f(x)的圖象在點(diǎn)(0,f(0))的切線(xiàn)方程;
(2)若存在x1,x2∈[-1,1],使得|f(x1)-f(x2)|≥e-1(e為自然對(duì)數(shù)的底數(shù)),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.若a≠b且ab≠0,則直線(xiàn)ax-y+b=0和二次曲線(xiàn)bx2+ay2=ab的形狀和位置可能是(  )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案