9.將5封信投入3個郵箱,每個郵箱至少投1封,不同的投法有( 。
A.125種B.81種C.150種D.240種

分析 將5封信分為(3,1,1)和(2,2,1)兩組,先分組再分配,問題得以解決.

解答 解:將5封信分為(3,1,1)和(2,2,1)兩組,
分組的方法為C53+$\frac{{C}_{5}^{2}{C}_{3}^{2}}{{A}_{2}^{2}}$=25,
再分配到3個郵箱,得到25A33=150種,
故選:C.

點(diǎn)評 本題考查排列組合知識,考查了分組分配問題,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分圖象如圖所示,則f(x)的解析式為( 。
A.$f(x)=\sqrt{2}sin(\frac{1}{2}x+\frac{π}{3})$B.$f(x)=\sqrt{2}sin(2x+\frac{π}{3})$C.$f(x)=\sqrt{2}sin(2x+\frac{π}{6})$D.$f(x)=\sqrt{2}sin(\frac{1}{2}x+\frac{π}{6})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知$\overrightarrow a,\overrightarrow b,\overrightarrow c$是同一平面內(nèi)的三個向量,其中$\overrightarrow a=(1,2)$.
(1)若|$\overrightarrow b$|=3$\sqrt{5}$,且$\overrightarrow a$∥$\overrightarrow b$,求$\overrightarrow b$的坐標(biāo).
(2)若|$\overrightarrow c$|=$\sqrt{10}$,且2$\overrightarrow{a}$+$\overrightarrow{c}$與4$\overrightarrow a-3\overrightarrow c$垂直,求$\overrightarrow a$與$\overrightarrow c$的夾角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,矩形OABC的邊長OA=a,OC=1,點(diǎn)A,C分別在x,y正半軸上,D在AC上,$\overrightarrow{CD}$=$\frac{1}{4}$$\overrightarrow{CA}$,直線l垂直AC于D,且交直線BC于點(diǎn)E,交y軸于點(diǎn)F.
(1)寫出AC中點(diǎn)及D坐標(biāo)(用a表示);
(2)若直線l交y軸于負(fù)半軸,求a的取值范圍;
(3)若直線l交y軸于正半軸,且l分矩形兩部分的面積之比是2:7,求|CE|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知$\overrightarrow a$=($\sqrt{3}$sinx,m+cosx),$\overrightarrow b$=(cosx,-m+cosx),且f(x)=$\overrightarrow{a}$•$\overrightarrow$.
(1)求函數(shù)的解析式;   
(2)當(dāng)x∈[-$\frac{π}{6}$,$\frac{π}{3}}$]時,求此時函數(shù)f(x)的最大值,并求出相應(yīng)的x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知復(fù)數(shù)z1=(a-1)+(2-a)i,z2=2a-1+(1-2a)i(其中i為虛數(shù)單位,a∈R),若z1+z2為實(shí)數(shù).
(1)求實(shí)數(shù)a的值;
(2)求z1z2+z12016+z22的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.在吸煙與患肺病是否有關(guān)的計(jì)算中,有下面說法:
①若x2=6.635,我們有99%的把握判定吸煙與患肺病有關(guān)聯(lián),那么在100個吸煙的人中必有99個人患肺病;
②由獨(dú)立性檢驗(yàn)可知有99%的把握判定吸煙與患肺病有關(guān)聯(lián)時,若某人吸煙,那么他有99%的可能患有肺。
③從統(tǒng)計(jì)量中求出有95%的把握判定吸煙與患肺病有關(guān)聯(lián),是指有5%的可能性使得推斷出現(xiàn)錯誤;
其中說法正確的個數(shù)為(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知m、n表示兩條不同直線,α表示平面,則下列說法正確的是( 。
A.若m∥α,n∥α,則m∥nB.若m⊥α,m⊥n,則n∥α
C.若m⊥α,n⊥α,則m∥nD.若m∥α,m⊥n,則 n⊥α

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知U=R,A={x|-3≤x≤4},B={x|x≤a或x>a+3},∁U(A∪B)={x|4<x≤a+3}≠∅,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案