已知單調(diào)遞增的等比數(shù)列{an}滿足:a2+a3+a4=28,且a3+2是a2與a4的等差中項(xiàng).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若Tn=na1+(n-1)a2+…+2an-1+an,求Tn
考點(diǎn):數(shù)列的求和,等比數(shù)列的通項(xiàng)公式
專題:等差數(shù)列與等比數(shù)列
分析:(1)由已知條件利用等比數(shù)列和通項(xiàng)公式和等差數(shù)列的性質(zhì)求出首項(xiàng)和公比,由此能求出數(shù)列{an}的通項(xiàng)公式.
(2)由Tn=n•2+(n-1)•22+(n-2)•23+…+2•2n-1+2n,利用錯位相減法能求出Tn
解答: 解:(1)∵單調(diào)遞增的等比數(shù)列{an}滿足:a2+a3+a4=28,且a3+2是a2與a4的等差中項(xiàng),
∴2(a3+2)=a2+a4,
代入a2+a3+a4=28,
解得a3=8,
∴a2+a4=20,
設(shè)首項(xiàng)為a1,公比為q,
a1q+a1q3=20
a3=a1q2=8
,
解得a1=2,q=2,或a1=32,q=
1
2
,
又{an}單調(diào)遞增,∴q=2,a1=2,
an=2n
(2)Tn=na1+(n-1)a2+…+2an-1+an
=n•2+(n-1)•22+(n-2)•23+…+2•2n-1+2n,①
2Tn=n•22+(n-1)•23+…+2•2n+2n+1,②
②-①得:Tn=-2n+22+23+…+2n+2n+1
=-2n+
22(1-2n)
1-2

=2n+2-2n-4.
點(diǎn)評:本題考查數(shù)列的通項(xiàng)公式的求法,考查數(shù)列的前n項(xiàng)和的求法,是中檔題,解題時要注意錯位相減法的合理運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

一個小型家具廠計(jì)劃生產(chǎn)A型和B型兩種型號的桌子,每種類型桌子都要經(jīng)過打磨、著色、上漆三道工序,A型桌子需要10min打磨,6min著色,6min上漆;B型桌子需要5min打磨,12min著色,9min上漆.如果一個工人每天打磨和上漆分別至多工作450min,著色每天至多工作480min,請你列出滿足生產(chǎn)條件的數(shù)學(xué)關(guān)系式,并在直角坐標(biāo)系中畫出相應(yīng)的平面區(qū)域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知線段AB的端點(diǎn)B的坐標(biāo)為(4,3),端點(diǎn)A在圓(x+1)2+y2=4上運(yùn)動.
(1)求線段AB的中點(diǎn)M的軌跡方程,并說明軌跡是什么圖形;
(2)記(1)中的軌跡為C,若過點(diǎn)N(1,2)的直線l被軌跡C截得的線段長為
2
,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是R上的可導(dǎo)函數(shù),f(x)的導(dǎo)數(shù)f′(x)的圖象如圖,則下列結(jié)論正確的是(  )
A、a,c分別是極大值點(diǎn)和極小值點(diǎn)
B、b,c分別是極大值點(diǎn)和極小值點(diǎn)
C、f(x)在區(qū)間(a,c)上是增函數(shù)
D、f(x)在區(qū)間(b,c)上是減函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的各項(xiàng)均為正數(shù),其前n項(xiàng)和為Sn,若{log2an}是公差為-1的等差數(shù)列,且S6=
3
8
,那么a1=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

橢圓
x2
25
+
y2
16
=1上一點(diǎn)M到直線l:x=
25
3
的距離為
20
3
,求M到左焦點(diǎn)的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知⊙C:x2+y2+2x-4y+3=0,在直線l:2x-4y+3=0上找一點(diǎn)P(m,n),過點(diǎn)P作⊙C的切線,切點(diǎn)記為M,求使|PM|取最小值的點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左右兩個焦點(diǎn)為F1,F(xiàn)2離心率為e=
2
2
,過點(diǎn)(
2
,1).
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)直線l:y=kx+m與橢圓C相交于A(x1,y1),B(x2,y2)兩點(diǎn),橢圓的左頂點(diǎn)為M,連接MA,MB并延長交直線x=4于P、Q兩點(diǎn),yP,yQ分別為P、Q的縱坐標(biāo),且滿足
1
y1
+
1
y2
=
1
yP
+
1
yQ

求證:直線l過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,圖中有5組數(shù)據(jù),去掉
 
組數(shù)據(jù)后(填字母代號),剩下的4組數(shù)據(jù)的線性相關(guān)性最大.

查看答案和解析>>

同步練習(xí)冊答案