4.拋物線y2=4x上一點到其焦點距離為3,則該點坐標(biāo)為(1,±3).

分析 根據(jù)拋物線的定義可知該點到準(zhǔn)線的距離與其到焦點的距離相等,進而利用點到直線的距離求得點的橫坐標(biāo)x的值,代入拋物線方程求得y值,即可得到所求點的坐標(biāo).

解答 解:拋物線y2=4x的準(zhǔn)線方程為x=-1,
∵拋物線y2=4x上一點到其焦點距離為3,
則該點到拋物線的準(zhǔn)線的距離為3,
∴所求點的橫坐標(biāo)為2,代入y2=4x,得$y=±2\sqrt{2}$.
故答案為:(2,±$2\sqrt{2}$).

點評 本題主要考查了拋物線的簡單性質(zhì).在涉及焦點弦和關(guān)于焦點的問題時常用拋物線的定義來解決,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.在等比數(shù)列{an}中,an<0且a1a5+2a42+a3a7=25,則a3+a5=-5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知函數(shù)f(x)=$\left\{\begin{array}{l}{2x,x≤0}\\{\frac{1}{2}f(x-1),x>0}\end{array}$,那么$f(\frac{5}{2})$的值為-$\frac{1}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=$\overrightarrow{a}•\overrightarrow$-3,$\overrightarrow{a}$=(2$\sqrt{3}$sinx,4),$\overrightarrow$=(2cosx,cos2x).
(Ⅰ)求函數(shù)f(x)的最大值及此時x的值;
(Ⅱ)在△ABC中,a,b,c分別為內(nèi)角A,B,C所對的邊,若f(A)為f(x)的最大值,且a=2,sinC=$\sqrt{3}$sinB,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.對于任意實數(shù)λ,曲線(1+λ)x2+(1+λ)y2+(6-4λ)x-16-6λ=0恒過定點(1,±3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖所示,在四棱錐P-ABCD中,四邊形ABCD為菱形,∠DAB=60°,AB=2,△PAD為等邊三角形,平面PAD⊥平面ABCD.
(1)求證AD⊥PB.
(2)在棱AB上是否存在點F,使DF與平面PDC所成角的正弦值為$\frac{2\sqrt{5}}{5}$?若存在,確定線段AF的長度;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.圖中的三視圖表示的幾何體為( 。
A.圓柱B.圓錐C.圓臺D.三棱柱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)f(x)=logag(x)(a>0,且a≠1)
(1)若f(x)=log${\;}_{\frac{1}{2}}$(3x-1),且滿足f(x)>1,求x的取值范圍:
(2)若g(x)=ax2-x,是否存在實數(shù)a使得f(x)在區(qū)間[$\frac{1}{2}$,3]上是增函數(shù)?如果存在,說明a可以取哪些值;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.高考規(guī)定考生遲列15分鐘后不能進入考場.?dāng)?shù)學(xué)考試下午15:00開始,假設(shè)某位同學(xué)是在15:00到15:15之間隨機到達(dá),求他最早到達(dá)考場時間是15:10且還能入場的概率.

查看答案和解析>>

同步練習(xí)冊答案