分析 根據(jù)拋物線的定義可知該點到準(zhǔn)線的距離與其到焦點的距離相等,進而利用點到直線的距離求得點的橫坐標(biāo)x的值,代入拋物線方程求得y值,即可得到所求點的坐標(biāo).
解答 解:拋物線y2=4x的準(zhǔn)線方程為x=-1,
∵拋物線y2=4x上一點到其焦點距離為3,
則該點到拋物線的準(zhǔn)線的距離為3,
∴所求點的橫坐標(biāo)為2,代入y2=4x,得$y=±2\sqrt{2}$.
故答案為:(2,±$2\sqrt{2}$).
點評 本題主要考查了拋物線的簡單性質(zhì).在涉及焦點弦和關(guān)于焦點的問題時常用拋物線的定義來解決,是中檔題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com