5.若x,y滿(mǎn)足$\left\{\begin{array}{l}{x-y+1≥0}\\{3x+y-3≤0}\\{y≥0}\end{array}\right.$,則$\frac{y}{x+2}$的取值范圍是[0,$\frac{3}{5}$].

分析 作出不等式組對(duì)應(yīng)的平面區(qū)域,利用$\frac{y}{x+2}$的幾何意義進(jìn)行求解即可.

解答 解:作出不等式組對(duì)應(yīng)的平面區(qū)域如圖,
設(shè)k=$\frac{y}{x+2}$,則k的幾何意義為區(qū)域內(nèi)的點(diǎn)到定點(diǎn)D(-2,0)的斜率,
由圖象知:
AD的斜率最大,DC的斜率最小,最小為0,
由$\left\{\begin{array}{l}{x-y+1=0}\\{3x+y-3=0}\end{array}\right.$得$\left\{\begin{array}{l}{x=\frac{1}{2}}\\{y=\frac{3}{2}}\end{array}\right.$,即A($\frac{1}{2}$,$\frac{3}{2}$),
即AD的斜率k=$\frac{\frac{3}{2}}{\frac{1}{2}+2}$=$\frac{3}{5}$,
故0≤$\frac{y}{x+2}$≤$\frac{3}{5}$,
故答案為:[0,$\frac{3}{5}$].

點(diǎn)評(píng) 本題主要考查線性規(guī)劃的應(yīng)用,根據(jù)目標(biāo)函數(shù)的幾何意義以及直線斜率公式是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知向量$\overrightarrow{a}$與$\overrightarrow$的方向相反,且|$\overrightarrow{a}$|=3與|$\overrightarrow$|=4,求|2$\overrightarrow{a}$-$\overrightarrow$|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.設(shè)集合M={x|2x2-y2=1},N={y|y=x2},則M∩N=( 。
A.{(1,1)}B.{(-1,1),(1,1)}C.$[{\frac{1}{2},+∞})$D.$[{\frac{{\sqrt{2}}}{2},+∞})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.若(2x-1)2015=a0+a1x+a2x2+…+a2015x2015(x∈R),則$\frac{1}{2}+\frac{a_2}{{{2^2}{a_1}}}+\frac{a_3}{{{2^3}{a_1}}}+…+\frac{{{a_{2015}}}}{{{2^{2015}}{a_1}}}$的值為( 。
A.$\frac{1}{2015}$B.-$\frac{1}{2015}$C.$\frac{1}{4030}$D.-$\frac{1}{4030}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.知a1=1,an+1=$\frac{a_n}{{3{a_n}+1}}$,則數(shù)列{an}的通項(xiàng)為an=( 。
A.$\frac{1}{2n-1}$B.2n-1C.$\frac{1}{3n-2}$D.3n-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知拋物線C:x2=2py(p>0)的焦點(diǎn)為F,直線x=4與x軸的交點(diǎn)為P,與C的交點(diǎn)為Q,且|QF|=$\frac{5}{4}$|PQ|.
(Ⅰ)求C的方程;
(Ⅱ)點(diǎn)A(-a,a)(a>0)在拋物線C上,是否存在直線l:y=kx+4與C交于點(diǎn)M,N,使得△MAN是以MN為斜邊的直角三角形?若存在,求出直線l的方程;若不存在說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.如圖,在棱長(zhǎng)為2的正方體ABCD-A1B1C1D1內(nèi)(含正方體表面)任取一點(diǎn)M,則$\overrightarrow{A{A}_{1}}$•$\overrightarrow{AM}$≥1的概率是(  )
A.$\frac{5}{6}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知數(shù)列{an}中a1=1,an+1-Sn=n+1,n∈N*,{an}的前n項(xiàng)和為Sn
(Ⅰ)證明:數(shù)列{an+1}是等比數(shù)列;
(Ⅱ)對(duì)一切n∈N*,若p(an+1)>3n-1恒成立,求實(shí)數(shù)p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.極坐標(biāo)系與直角坐標(biāo)系xOy有相同的長(zhǎng)度單位,以原點(diǎn)o為極點(diǎn),以x軸正半軸為極軸.曲線C的極坐標(biāo)方程為 ρ2=4,已知傾斜角為$\frac{π}{4}$的直線?經(jīng)過(guò)點(diǎn)P(1,1).
(Ⅰ)寫(xiě)出直線?的參數(shù)方程;曲線C的直角坐標(biāo)方程;
(Ⅱ)設(shè)直線?與曲線C相交于A,B兩點(diǎn),求$\frac{1}{|PA|}+\frac{1}{|PB|}$的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案