分析 由已知可函數(shù)f(x)既是奇函數(shù)又是周期函數(shù),且f(x)的最小正周期為π,可得:f(-$\frac{5}{3}$π)=f(-$\frac{2}{3}$π)=f($\frac{1}{3}$π)=-f(-$\frac{1}{3}$π),進而得到答案.
解答 解:∵函數(shù)f(x)既是奇函數(shù)又是周期函數(shù),且f(x)的最小正周期為π,
∴f(-$\frac{5}{3}$π)=f(-$\frac{2}{3}$π)=f($\frac{1}{3}$π)=-f(-$\frac{1}{3}$π),
又∵當(dāng)x∈[-$\frac{π}{2}$,0)時,f(x)=sinx.
f(-$\frac{1}{3}$π)=-$\frac{\sqrt{3}}{2}$,
∴f(-$\frac{5}{3}$π)=$\frac{\sqrt{3}}{2}$,
故答案為:$\frac{\sqrt{3}}{2}$
點評 本題考查的知識點是正弦函數(shù)的圖象和性質(zhì),熟練掌握正弦函數(shù)的圖象和性質(zhì),是解答的關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (2,+∞) | B. | [2,+∞) | C. | (-∞,2) | D. | (-∞,2] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (1,+∞) | B. | (-∞,3) | C. | [$\frac{3}{5}$,3) | D. | (1,3) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com