考點(diǎn):對(duì)數(shù)的運(yùn)算性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:f(2014)=f(2013)-f(2012)=[f(2012)-f(2011)]-f(2012)=-f(2011),即當(dāng)x>6時(shí)滿足f(x)=-f(x-3)=f(x-6),周期為6,由此能求出結(jié)果.
解答:
解:∵f(x)=
| log2(1-x),x≤0 | f(x-1)-f(x-2),x>0 |
| |
,
∵f(2014)=f(2013)-f(2012)
=[f(2012)-f(2011)]-f(2012)=-f(2011),
即當(dāng)x>6時(shí)滿足f(x)=-f(x-3)=f(x-6),周期為6
∴f(2014)=f(335×6+4)=f(4)
=f(3)-f(2)=f(2)-f(1)-f(2)=-f(1)
=-f(0)+f(-1)
=-log
21+log
22=1.
故選:B.
點(diǎn)評(píng):本題考查分段函數(shù)的函數(shù)值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意函數(shù)的周期性的靈活運(yùn)用.