已知函數(shù)f(x)是定義在[-4,+∞)上的單調(diào)增函數(shù),且對(duì)于一切實(shí)數(shù)x,不等式f(cosx-b2)≥f(sin2x-b-3)恒成立,則實(shí)數(shù)b的取值范圍是
 
考點(diǎn):函數(shù)單調(diào)性的性質(zhì)
專題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)函數(shù)f(x)是定義在[-4,+∞)上的單調(diào)增函數(shù),且對(duì)于一切實(shí)數(shù)x,不等式f(cosx-b2)≥f(sin2x-b-3)恒成立,可得cosx-b2≥sin2x-b-3≥-4,即cosx-sin2x≥b2-b-3且sin2x≥b-1,從而可求實(shí)數(shù)b的取值范圍.
解答: 解:∵函數(shù)f(x)是定義在[-4,+∞)上的單調(diào)增函數(shù),且對(duì)于一切實(shí)數(shù)x,不等式f(cosx-b2)≥f(sin2x-b-3)恒成立,
∴cosx-b2≥sin2x-b-3≥-4,
∴cosx-sin2x≥b2-b-3且sin2x≥b-1,
∵cosx-sin2x=(cosx+
1
2
2-
5
4
∈[-
5
4
,1],sin2x∈[0,1],
∴b2-b-3≤-
5
4
且b-1≤0,
∴實(shí)數(shù)b的取值范圍是[
1
2
-
2
,1]

故答案為:[
1
2
-
2
,1]
點(diǎn)評(píng):本題考查函數(shù)單調(diào)性的性質(zhì),考查解不等式,轉(zhuǎn)化為cosx-b2≥sin2x-b-3≥-4是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

平面內(nèi)的1條直線把平面分成兩部分,2條相交直線把平面分成4部分,3條相交但不共點(diǎn)的直線把平面分成7部分,則15條彼此相交而無(wú)3條直線共點(diǎn)的直線把平面分成
 
部分.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

|x|=1是x=1的
 
條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=x2-2x+3在[0,a+2]上最大值為3,則a的取值范圍
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

P為雙曲線
x2
4
-
y2
3
=1右支上一點(diǎn),F(xiàn)為雙曲線C的左焦點(diǎn),點(diǎn)A(0,3)則|PA|+|PF|的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某程序框圖如圖所示,該程序運(yùn)行后輸出S的值是( 。
A、8B、10C、31D、63

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義在R上的函數(shù)f(x)滿足f(x)=
log2(1-x)(x≤0)
f(x-1)-f(x-2)(x>0)
,則f(2014)的值是(  )
A、-1
B、1
C、log23
D、-log23

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

經(jīng)過(guò)兩點(diǎn)A(4,2y+1),B(2,-3)的直線的斜率為-1,則y等于( 。
A、-1B、-3C、0D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)實(shí)數(shù)a和b,定義運(yùn)算“?”:a?b=
a,a≤b
b,a>b
,設(shè)函數(shù)f(x)=x2?(x+2),x∈R,若函數(shù)y=f(x)-c的圖象與x軸恰有三個(gè)公共點(diǎn),則實(shí)數(shù)c的取值范圍是(  )
A、[-1,0)
B、(0,1)
C、(-1,0)
D、(-1,0)∪[1,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案