11.(1)求垂直于直線x+3y-5=0且與點P(-1,0)的距離是$\frac{3\sqrt{10}}{5}$的直線方程;
(2)求圓心在直線y=-4x上,且與直線l:x+y-1=0相切于點P(3,-2)的圓的方程.

分析 (1)根據(jù)兩直線垂直,設(shè)所求的直線方程為3x-y+k=0,再根據(jù)點P(-1,0)到它的距離列方程求出k的值,即得所求的直線方程;
(2)設(shè)圓的方程為(x-a)2+(y-b)2=r2(r>0),由圓心在直線y=-4x上,并且與直線l:x+y-1=0相切于點P(3,-2),可以構(gòu)造a,b,r的方程組,解方程組可得a,b,r的值,進而得到圓的方程.

解答 解:(1)由所求的直線與直線x+3y-5=0垂直,可設(shè)所求的直線方程為 3x-y+k=0,
再由點P(-1,0)到它的距離為$\frac{|-3+k|}{\sqrt{9+1}}$=$\frac{3\sqrt{10}}{5}$⇒|k-3|=6
解得k=9或-3;
故所求的直線方程為 3x-y+9=0或3x-y-3=0.
(2)設(shè)圓的方程為(x-a)2+(y-b)2=r2(r>0)
由題意有:$\left\{\begin{array}{l}{b=-4a}\\{\frac{|a+b-1|}{\sqrt{2}}=r}\\{\frac{b+2}{a-3}•(-1)=-1}\end{array}\right.$
解之得a=1,b=-4,r=2$\sqrt{2}$.
∴所求圓的方程為(x-1)2+(y+4)2=8.

點評 本題考查的知識點是直線與圓的位置關(guān)系,圓的標準方程,考查學(xué)生掌握兩直線平行以及垂直時直線方程的關(guān)系,其中根據(jù)已知構(gòu)造關(guān)于圓心坐標及半徑的方程組,是解答本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知$\overrightarrow{{e}_{1}}$、$\overrightarrow{{e}_{2}}$是夾角為90°的兩個單位向量,若$\overrightarrow{a}$=$\overrightarrow{{e}_{1}}$+$\sqrt{3}$$\overrightarrow{{e}_{2}}$,$\overrightarrow$=-2$\overrightarrow{{e}_{1}}$,則$\overrightarrow{a}$與$\overrightarrow$的夾角為( 。
A.30°B.60°C.120°D.150°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.(Ⅰ)已知$f(x)=\frac{{{x^2}-1}}{x+lnx}$,求f′(x);
(Ⅱ)已知曲線y=e-2x+1,求曲線在點(0,2)處的切線與直線y=0和y=x圍成的三角形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.函數(shù)$y=lg\sqrt{x+1}$的定義域是(-1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.某觀測站C在城A的南偏西20°的方向上,由A城出發(fā)有一條公路,走向是南偏東25°,在C處測得距C為14千米的公路上B處有一人正沿公路向A城走去,走了6千米后,到達D處,此時C、D間距離為10千米,
(1)求A與C間距離;
(2)問還需走多少千米到達A城?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)[x]表示不超過x的最大整數(shù)(如$[2]=2,[{\frac{5}{4}}]=1$),對于函數(shù)f(x)=$\frac{{{{2015}^x}}}{{1+{{2015}^x}}}$,函數(shù)$g(x)=[{f(x)-\frac{1}{2}}]+[{f(-x)-\frac{1}{2}}]$的值域是( 。
A.{-1,0}B.{-1,1}C.{0,1}D.{-1,0,1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.下列命題中,所有正確的命題的序號是②③④.
①三個平面兩兩相交必有三條交線;
②空間四點A、B、C、D,若直線AB和直線CD是異面直線,那么直線AC和直線BD也是異面直線;
③空間四點若不在同一個平面內(nèi),則其中任意三點不在同一條直線上;
④直線在平面外是指直線與平面平行或相交.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.設(shè)a,b∈R,函數(shù)f(x)=ex-alnx-a,其中e是自然對數(shù)的底數(shù),曲線y=f(x)在點(1,f(1))處的切線方程為(e-1)x-y+b=0.
(1)求實數(shù)a,b的值;
(2)求證:函數(shù)y=f(x)存在極小值;
(3)若?x∈[$\frac{1}{2}$,+∞),使得不等式$\frac{e^x}{x}$-lnx-$\frac{m}{x}$≤0成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.執(zhí)行下邊的程序框圖,若輸入的x的值為1,則輸出的y的值是4.

查看答案和解析>>

同步練習(xí)冊答案