已知在△ABC中,AB,AC的長度均為1,它們的夾角為60°,則|
AB
+2
CA
|=
 
考點(diǎn):平面向量數(shù)量積的運(yùn)算
專題:平面向量及應(yīng)用
分析:利用向量的模的平方,通過數(shù)量積求值然后求出向量的模.
解答: 解:在△ABC中,AB,AC的長度均為1,它們的夾角為60°,
則|
AB
+2
CA
|=
AB
2
+4
AB
CA
+4
CA
2
=
1+4×1×1×(-
1
2
)+4
=
3

故答案為:
3
點(diǎn)評:本題考查向量的數(shù)量積的運(yùn)算,向量的模的求法,考查計(jì)算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,A,B,C的對邊分別是a,b,c,已知a2+b2=2012c2,求證
2sinAsinBcosC
sin2(A+B)
為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(cosx,sin
x
2
)
,
b
=(0,cos
x
2
)
,x∈R,若函數(shù)f(x)=2+sinx-|a-b|2,且函數(shù)g(x)的圖象與函數(shù)f(x)的圖象關(guān)于原點(diǎn)成中心對稱.
(Ⅰ)求函數(shù)g(x)的解析式;
(Ⅱ)若h(x)=g(x)-λf(x)+1在x∈[-
π
2
π
2
]上是增函數(shù),求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知某個幾何體的三視圖如圖,則這個幾何體的表面積為( 。
A、4+
6
B、4+2
6
C、6
D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知在平面直角坐標(biāo)系xoy中,點(diǎn)P(x,y),Q(x,-2),且以線段PQ為直徑的圓經(jīng)過原點(diǎn)O.
(1)求動點(diǎn)P的軌跡C;
(2)過點(diǎn)M(0,-2)的直線l與軌跡C交于兩點(diǎn)A、B,點(diǎn)A關(guān)于y軸的對稱點(diǎn)為A′,試問直線A′B是否恒過一定點(diǎn),若是,并求此定點(diǎn);若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知|
a
|=5,|
b
|=3,且
a
b
=-12,則
a
b
上的投影=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=x2-16x+q+3
(1)若函數(shù)在區(qū)間[-1,1]上存在零點(diǎn),求實(shí)數(shù)q的取值范圍;
(2)是否存在常數(shù)t(t≥0),當(dāng)t∈[t,10]時,f(x)的值域?yàn)閰^(qū)間D,且區(qū)間D的長度為12-t(視區(qū)間[a,b]的長度為b-a),若存在,求出所有滿足條件的t,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將下列函數(shù)轉(zhuǎn)化為Asin(ωx+φ)+B的形式,
(1)f(x)=cosx(sinx-cosx)+1
(2)f(x)=2
3
sinxcosx-2sin2x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,若a=55,b=16,且
1
2
absinC=220
3
,求角C.

查看答案和解析>>

同步練習(xí)冊答案