分析 (Ⅰ)由條件任意角的三角函數(shù)的定義求得cos∠AOB 的值.
(Ⅱ)由條件利用同角三角函數(shù)的基本關(guān)系求出sin∠AOB 的值,再利用兩角和差的余弦公式求得cos∠AOC=cos(∠AOB-∠AOC)的值,再利用余弦定理求得AC2 的值.
解答 解:(Ⅰ)由題意可得圓O的半徑為OB=$\sqrt{5}$,∴cos∠AOB=$\frac{-1}{\sqrt{5}}$=-$\frac{\sqrt{5}}{5}$.
(Ⅱ)由以上可得,sin∠AOB=$\sqrt{{1-cos}^{2}∠AOB}$=$\frac{2\sqrt{5}}{5}$,又∠BOC=$\frac{π}{4}$,
∴cos∠AOC=cos(∠AOB-∠AOC)=cos∠AOB•cos∠BOC+sin∠AOB•sin∠BOC=-$\frac{\sqrt{5}}{5}$•$\frac{\sqrt{2}}{2}$+$\frac{2\sqrt{5}}{5}$•$\frac{\sqrt{2}}{2}$=$\frac{\sqrt{10}}{10}$,
∴AC2 =OA2+OC2-2OA•OC•cos∠AOC=5+5-10•$\frac{\sqrt{10}}{10}$=10-$\sqrt{10}$.
點(diǎn)評 本題主要考查任意角的三角函數(shù)的定義,同角三角函數(shù)的基本關(guān)系,兩角和的差的余弦公式,余弦定理,屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 3 | C. | 5 | D. | 6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 6 | B. | 8 | C. | 12 | D. | 24 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{4}$ | B. | $\frac{1}{2}$ | C. | $\frac{π}{4}$ | D. | 1$-\frac{π}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{n+1}$ | B. | $\frac{n}{n+1}$ | C. | $\frac{1}{2}n(n+1)$ | D. | $\frac{1}{2}(n+1)(n+2)$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $C_{50}^{10}•C_{10}^5$ | B. | $\frac{{C_{50}^{10}•C_{10}^5}}{2}$ | ||
C. | $C_{50}^{10}•C_{10}^5•A_2^2$ | D. | $C_{50}^5•C_{45}^5•A_2^2$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com