8.已知函數(shù)f(x)=$\frac{x+b}{{e}^{x}}$在區(qū)間(-∞,2)上為單調(diào)遞增函數(shù),則實(shí)數(shù)b的取值范圍是( 。
A.(-1,1)B.[0,1)C.(1,+∞)D.(-∞,-1]

分析 求出函數(shù)的導(dǎo)數(shù),問題轉(zhuǎn)化為∴b≤(-x+1)min在(-∞,2)恒成立,從而求出b的范圍即可.

解答 解:f′(x)=$\frac{1-x-b}{{e}^{x}}$,
若函數(shù)f(x)在區(qū)間(-∞,2)上為單調(diào)遞增函數(shù),
則1-x-b≥0在(-∞,2)恒成立,
∴b≤(-x+1)min
而-x+1>-1,
∴b≤-1,
故選:D.

點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性問題,考查導(dǎo)數(shù)的應(yīng)用以及轉(zhuǎn)化思想,是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知a、b、c為正數(shù),求證:$\frac{{a}^{2}}$+$\frac{^{2}}{c}$+$\frac{{c}^{2}}{a}$≥$\sqrt{ab}$+$\sqrt{bc}$+$\sqrt{ac}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知平面向量$\vec a$,$\vec b$,$\vec e$滿足|$\vec e}$|=1,$\vec a$•$\vec e$=2,$\vec b$•$\vec e$=3,|$\vec a$-$\vec b}$|=$\sqrt{5}$,則$\vec a$•$\vec b$的最小值為5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知△ABC是邊長為1的等邊三角形,則($\overrightarrow{AB}$-2$\overrightarrow{BC}$)•(3$\overrightarrow{BC}$-4$\overrightarrow{AC}$)=(  )
A.-$\frac{13}{2}$B.-$\frac{11}{2}$C.-6-$\frac{{\sqrt{3}}}{2}$D.-6+$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.下列結(jié)論中正確的個(gè)數(shù)有(  )
(1)數(shù)列{an},{bn}都是等差數(shù)列,則數(shù)列{an+bn}也一定是等差數(shù)列;
(2)數(shù)列{an},{bn}都是等比數(shù)列,則數(shù)列{an+bn}也一定是等比數(shù)列;
(3)等差數(shù)列{an}的首項(xiàng)為a1,公差為d,取出數(shù)列中的所有奇數(shù)項(xiàng),組成一個(gè)新的數(shù)列,一定還是等差數(shù)列;
(4)G為a,b的等比中項(xiàng)?G2=ab.
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖,正方形ABCD所在平面與直角三角形ABE所在的平面相互垂直,AE⊥AB,設(shè)M,N分別是DE,AB的中點(diǎn),已知AB=2,AE=1.
(1)求證:MN∥平面BEC;
(2)求三棱錐N-BCE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.從一批產(chǎn)品中取出三件產(chǎn)品,設(shè)A表示事件“三件產(chǎn)品全不是次品”,B表示事件“三件產(chǎn)品全是次品”,C表示事件“三件產(chǎn)品至少有一件是次品”,則下列結(jié)論正確的是(  )
A.事件A與C互斥B.任何兩個(gè)事件均互斥
C.事件B與C互斥D.任何兩個(gè)事件均不互斥

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.如圖所示,正方體ABCD-A1B1C1D1的棱長為1,E是A1B1上的點(diǎn),則點(diǎn)E到平面ABC1D1的距離是$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,在四棱錐P-ABCD中,側(cè)棱PA⊥底面ABCD,AD∥BC,∠ABC=90°,PA=AB=BC=2,AD=1,M是棱PB中點(diǎn).
(Ⅰ)求證:平面PBC⊥平面PCD;
(Ⅱ)設(shè)點(diǎn)N是線段CD上一動(dòng)點(diǎn),且$\overrightarrow{DN}$=λ$\overrightarrow{DC}$,當(dāng)直線MN與平面PAB所成的角最大時(shí),求λ的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案