13.如圖,正方形ABCD所在平面與直角三角形ABE所在的平面相互垂直,AE⊥AB,設(shè)M,N分別是DE,AB的中點(diǎn),已知AB=2,AE=1.
(1)求證:MN∥平面BEC;
(2)求三棱錐N-BCE的體積.

分析 (1)取EC中點(diǎn)F,連接MF,BF.由線線平行證明線面平行;
(2)證明CB⊥平面ABE,利用等體積轉(zhuǎn)換,即可求三棱錐N-BCE的體積.

解答 證明:(1)取EC中點(diǎn)F,連接MF,BF.
∵M(jìn)F為△CDE的中位線,
∴MF∥CD,MF=$\frac{1}{2}$CD,
又∵NB∥CD,NB=$\frac{1}{2}$CD,
∴NB∥MF,NB=MF
∴四邊形NBFM為平行四邊形,
∴MN∥BF,又∵BF⊆平面BEC,MN?平面BEC,
∴MN∥平面BEC;
解:(2)∵正方形ABCD所在平面與直角三角形ABE所在的平面相互垂直,正方形ABCD所在平面與直角三角形ABE所在的平面相交于AB,CB⊥AB,
∴CB⊥平面ABE,
∴VN-BCE=VC-BNE=$\frac{1}{3}{S}_{△BEN}•CB$=$\frac{1}{3}•\frac{1}{2}•1•1•2$=$\frac{1}{3}$.

點(diǎn)評(píng) 本題綜合考查了空間中線面的位置關(guān)系,考查體積的計(jì)算,正確轉(zhuǎn)換底面是關(guān)鍵,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知$\overrightarrow a$=(3,-4),$\overrightarrow b$=(3,t),向量$\overrightarrow b$在$\overrightarrow a$方向上的投影為-3,則t=6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.執(zhí)行如圖所示程序框圖,若輸入的x=1,則輸出的a,b的值依次是( 。
A.2,0B.0,2C.-1,-1D.1,1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知集合A={x|0≤x≤1},f(x)=x2-2ax+3a-2,(a∈R).
(1)設(shè)f(x)<0的解集為B,當(dāng)A∩B=A時(shí).求實(shí)數(shù)a的取值范圍;
(2)當(dāng)x∈A時(shí),求函數(shù)f(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知函數(shù)f(x)=$\frac{x+b}{{e}^{x}}$在區(qū)間(-∞,2)上為單調(diào)遞增函數(shù),則實(shí)數(shù)b的取值范圍是( 。
A.(-1,1)B.[0,1)C.(1,+∞)D.(-∞,-1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.求下面函數(shù)的最大值.
(1)y=3x-2x2+1;
(2)y=-$\frac{2}{x}$,x∈[-3,-1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)集合M={x|x2+2x-8<0},N={y|y=2x},則M∩N=( 。
A.(0,4)B.[0,4)C.(0,2)D.[0,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.某市在對(duì)學(xué)生的綜合素質(zhì)評(píng)價(jià)中,將其測評(píng)結(jié)果分為“優(yōu)秀、合格、不合格”三個(gè)等級(jí),其中不小于80分為“優(yōu)秀”,小于60分為“不合格”,其它為“合格”.
(1)某校高一年級(jí)有男生500人,女生400人,為了解性別對(duì)該綜合素質(zhì)評(píng)價(jià)結(jié)果的影響,采用分層抽樣的方法從高一學(xué)生中抽取45名學(xué)生的綜合素質(zhì)評(píng)價(jià)結(jié)果,其各個(gè)等級(jí)的頻數(shù)統(tǒng)計(jì)如下表:
等級(jí)優(yōu)秀合格不合格
男生(人)15x5
女生(人)153y
根據(jù)表中統(tǒng)計(jì)的數(shù)據(jù)填寫下面2×2列聯(lián)表,并判斷是否有90%的把握認(rèn)為“綜合素質(zhì)評(píng)價(jià)測評(píng)結(jié)果為優(yōu)秀與性別有關(guān)”?
優(yōu)秀男生女生總計(jì)
非優(yōu)秀
總計(jì)
(2)以(1)中抽取的45名學(xué)生的綜合素質(zhì)評(píng)價(jià)等級(jí)的頻率作為全市各個(gè)評(píng)價(jià)等級(jí)發(fā)生的概率,且每名學(xué)生是否“優(yōu)秀”相互獨(dú)立,現(xiàn)從該市高一學(xué)生中隨機(jī)抽取3人.
①求所選3人中恰有2人綜合素質(zhì)評(píng)價(jià)為“優(yōu)秀”的概率;
②記X表示這3人中綜合素質(zhì)評(píng)價(jià)等級(jí)為“優(yōu)秀”的個(gè)數(shù),求X的數(shù)學(xué)期望.
參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
臨界值表:
P(K2≥k00.150.100.050.0250.010
k02.0722.7063.8415.0246.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=|2x-1|.
(Ⅰ)若不等式f(x+$\frac{1}{2}$)≤2m-1(m>0)的解集為[-2,2],求實(shí)數(shù)m的值;
(Ⅱ)若不等式f(x)≤2y+$\frac{a}{{2}^{y}}$+|2x+3|,對(duì)任意的實(shí)數(shù)x,y∈R恒成立,求實(shí)數(shù)a的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案