設(shè)平面與平面相交于直線,直線在平面內(nèi),直線在平面內(nèi),且,則是的( )
A.充分不必要條件 B.必要不充分條件
C.充分必要條件 D.既不充分也不必要條件
A
【解析】
試題分析:由平面與平面相交于直線,直線在平面內(nèi),且,得,,因?yàn)橹本在平面內(nèi),則;但因?yàn)槿?img src="http://thumb.zyjl.cn/pic6/res/GZSX/web/STSource/2014111720473871767851/SYS201411172047403896339577_DA/SYS201411172047403896339577_DA.012.png">與平行,則由平面與平面相交于直線,直線在平面內(nèi),且,推不出,故而推不出,故選A.
考點(diǎn):面面垂直的判定與性質(zhì),線面垂直的定義
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2015屆黑龍江省高二下學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:選擇題
下列函數(shù)中,與函數(shù) 有相同定義域的是( ).
A . B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆黑龍江省高二下學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:選擇題
已知符號(hào)表示不超過的最大整數(shù),若函數(shù)有且僅有3個(gè)零點(diǎn),則的取值范圍是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆黑龍江省高二下學(xué)期期末考試文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知圓的極坐標(biāo)方程為:.
(1)將極坐標(biāo)方程化為普通方程;
(2)若點(diǎn)在該圓上,求的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆黑龍江省高二下學(xué)期期末考試文科數(shù)學(xué)試卷(解析版) 題型:選擇題
已知兩條不同直線、,兩個(gè)不同平面、,給出下列命題:
①若∥,則平行于內(nèi)的所有直線;
②若,且⊥,則⊥;
③若,,則⊥;
④若,且∥,則∥;
其中正確命題的個(gè)數(shù)為( )
A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆黑龍江省高二下學(xué)期期末理科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù)f(x)= -ax(a∈R,e為自然對(duì)數(shù)的底數(shù)).
(1)討論函數(shù)f(x)的單調(diào)性;
(2)若a=1,函數(shù)在區(qū)間(0,+)上為增函數(shù),求整數(shù)m的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆黑龍江省高二下學(xué)期期末理科數(shù)學(xué)試卷(解析版) 題型:填空題
下面給出的命題中:
①已知則與的關(guān)系是
②已知服從正態(tài)分布,且,則
③將函數(shù)的圖象向右平移個(gè)單位,得到函數(shù)的圖象。
其中是真命題的有 _____________(填序號(hào)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆黑龍江省高二下學(xué)期期末文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知公差不為零的等差數(shù)列,滿足且,,成等比數(shù)列.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),求數(shù)列前項(xiàng)的和為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆黑龍江大慶鐵人中學(xué)高二下學(xué)期四月月考理科數(shù)學(xué)試卷(解析版) 題型:選擇題
函數(shù)的單調(diào)遞減區(qū)間是( )
A. B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com