【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)當(dāng)時(shí),曲線總在曲線的下方,求實(shí)數(shù)的取值范圍.
【答案】(1) 當(dāng)時(shí),函數(shù)在上單調(diào)遞增;當(dāng)時(shí),在上單調(diào)遞增,在上單調(diào)遞減;(2) .
【解析】試題分析:(1)求出,分兩種情況討論的范圍,在定義域內(nèi),分別令求得的范圍,可得函數(shù)增區(qū)間,求得的范圍,可得函數(shù)的減區(qū)間;;(2)原命題等價(jià)于不等式在上恒成立,即,不等式恒成立,可化為恒成立,只需大于的最大值即可.
試題解析:(1)由可得的定義域?yàn)?/span>,且,
若,則,函數(shù)在上單調(diào)遞增;
若,則當(dāng)時(shí),,在上單調(diào)遞增,
當(dāng)時(shí),,在上單調(diào)遞減.
綜上,當(dāng)時(shí),函數(shù)在上單調(diào)遞增;
當(dāng)時(shí),在上單調(diào)遞增,在上單調(diào)遞減.
(2)原命題等價(jià)于不等式在上恒成立,
即,不等式恒成立.
∵當(dāng)時(shí),,∴,
即證當(dāng)時(shí),大于的最大值.
又∵當(dāng)時(shí),,∴,
綜上所述,.
【方法點(diǎn)晴】本題主要考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性以及不等式恒成立問(wèn)題,屬于難題.不等式恒成立問(wèn)題常見(jiàn)方法:① 分離參數(shù)恒成立(即可)或恒成立(即可);② 數(shù)形結(jié)合( 圖象在 上方即可);③ 討論最值或恒成立;④ 討論參數(shù).本題是利用方法 ① 求得 的范圍.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】省環(huán)保廳對(duì)、、三個(gè)城市同時(shí)進(jìn)行了多天的空氣質(zhì)量監(jiān)測(cè),測(cè)得三個(gè)城市空氣質(zhì)量為優(yōu)或良的數(shù)據(jù)共有180個(gè),三城市各自空氣質(zhì)量為優(yōu)或良的數(shù)據(jù)個(gè)數(shù)如下表所示:
城 | 城 | 城 | |
優(yōu)(個(gè)) | 28 | ||
良(個(gè)) | 32 | 30 |
已知在這180個(gè)數(shù)據(jù)中隨機(jī)抽取一個(gè),恰好抽到記錄城市空氣質(zhì)量為優(yōu)的數(shù)據(jù)的概率為0.2.
(1)現(xiàn)按城市用分層抽樣的方法,從上述180個(gè)數(shù)據(jù)中抽取30個(gè)進(jìn)行后續(xù)分析,求在城中應(yīng)抽取的數(shù)據(jù)的個(gè)數(shù);
(2)已知, ,求在城中空氣質(zhì)量為優(yōu)的天數(shù)大于空氣質(zhì)量為良的天數(shù)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】圖1是由矩形和菱形組成的一個(gè)平面圖形,其中, ,將其沿折起使得與重合,連結(jié),如圖2.
(1)證明圖2中的四點(diǎn)共面,且平面平面;
(2)求圖2中的四邊形的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線的焦點(diǎn)為,為軸上的點(diǎn).
(1)過(guò)點(diǎn)作直線與相切,求切線的方程;
(2)如果存在過(guò)點(diǎn)的直線與拋物線交于,兩點(diǎn),且直線與的傾斜角互補(bǔ),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在正四棱錐中,E,F分別為棱VA,VC的中點(diǎn).
(1)求證:EF∥平面ABCD;
(2)求證:平面VBD⊥平面BEF.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,E為PA的中點(diǎn),F為BC的中點(diǎn),底面ABCD是菱形,對(duì)角線AC,BD交于點(diǎn)O.求證:
(1)平面EFO∥平面PCD;
(2)平面PAC⊥平面PBD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在如圖所示的幾何體中,四邊形是正方形,平面,分別是線段的中點(diǎn),.
(1)求證:∥平面;
(2)求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)集合
(1)當(dāng)A中元素個(gè)數(shù)為1時(shí),求:a和A;
(2)當(dāng)A中元素個(gè)數(shù)至少為1時(shí),求:a的取值范圍;
(3)求:A中各元素之和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某重點(diǎn)中學(xué)100位學(xué)生在市統(tǒng)考中的理科綜合分?jǐn)?shù),以, , , , , , 分組的頻率分布直方圖如圖.
(1)求直方圖中的值;
(2)求理科綜合分?jǐn)?shù)的眾數(shù)和中位數(shù);
(3)在理科綜合分?jǐn)?shù)為, , , 的四組學(xué)生中,用分層抽樣的方法抽取11名學(xué)生,則理科綜合分?jǐn)?shù)在的學(xué)生中應(yīng)抽取多少人?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com