分析 (1)運用二倍角的正弦和和差角(輔助角)公式,可化簡函數(shù)的解析式,結合正弦函數(shù)的值域可得答案;
(2)由f($\frac{α}{2}$)=$\frac{1}{4}$,α∈(0,π),利用同角三角函數(shù)的基本關系公式,求sin(α+$\frac{π}{3}$)和cos(α+$\frac{π}{3}$),再由差角正弦公式,可得答案.
解答 解:(1)f(x)=-$\sqrt{3}$sin2x+sinxcosx+$\frac{{\sqrt{3}}}{2}$
=-$\sqrt{3}$×$\frac{1-cos2x}{2}$+$\frac{1}{2}$sin2x+$\frac{{\sqrt{3}}}{2}$
=$\frac{\sqrt{3}}{2}$cos2x+$\frac{1}{2}$sin2x
=sin(2x+$\frac{π}{3}$)
故f(x)值域為:[-1,1];
(2)∵f($\frac{α}{2}$)=$\frac{1}{4}$,
∴sin(α+$\frac{π}{3}$)=$\frac{1}{4}$,
∵α∈(0,π),
∴α+$\frac{π}{3}$∈($\frac{π}{3}$,$\frac{4π}{3}$),
則α+$\frac{π}{3}$為鈍角,
故cos(α+$\frac{π}{3}$)=-$\frac{\sqrt{15}}{4}$,
故sinα=sin[(α+$\frac{π}{3}$)-$\frac{π}{3}$]=sin(α+$\frac{π}{3}$)cos$\frac{π}{3}$-cos(α+$\frac{π}{3}$)sin$\frac{π}{3}$=$\frac{1}{4}$×$\frac{1}{2}$+$\frac{\sqrt{15}}{4}$×$\frac{\sqrt{3}}{2}$=$\frac{1+3\sqrt{5}}{8}$.
點評 本題考查二倍角的正弦和余弦公式及運用,考查正弦函數(shù)的值域問題,考查三角函數(shù)值的求法,注意周期的運用,考查運算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | y=sin(x+$\frac{π}{3}$) | B. | y=sin(2x+$\frac{π}{3}$) | C. | y=sin(2x-$\frac{π}{3}$) | D. | y=sin(2x+$\frac{2π}{3}$) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 6 | B. | 6$\sqrt{2}$ | C. | 8 | D. | 8$\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -1 | B. | 0 | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com