A. | $\frac{{3\sqrt{2}}}{4}$ | B. | -$\frac{{\sqrt{2}}}{4}$ | C. | -$\frac{{3\sqrt{2}}}{4}$ | D. | $\frac{{\sqrt{2}}}{4}$ |
分析 利用兩角和的正切將tan(α+β)=4tanβ轉(zhuǎn)化,整理為關(guān)于tanβ的一元二次方程,利用題意,結(jié)合韋達(dá)定理即可求得答案
解答 解:∵tan(α+β)-2tanβ=0,
∴tan(α+β)=2tanβ,
∴$\frac{tanα+tanβ}{1-tanαtanβ}$=2tanβ,
∴2tanαtan2β-tanβ+tanα=0,①
∴α,β∈($\frac{3π}{2}$,2π),
∴方程①有兩負(fù)根,tanα<0,
∴△=1-8tan2α≥0,
∴tan2α≤$\frac{1}{8}$,
∴tanα≥-$\frac{\sqrt{2}}{4}$
∴tanα的最小值是-$\frac{\sqrt{2}}{4}$,
故選:B.
點(diǎn)評 本題考查兩角和與差的正切函數(shù),考查一元二次方程中韋達(dá)定理的應(yīng)用,考查轉(zhuǎn)化思想與方程思想,屬于中檔題
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{3}$ | B. | $\frac{5π}{6}$ | C. | $\frac{2π}{3}$ | D. | $\frac{π}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
做不到“光盤” | 能做到“光盤” | |
男 | 45 | 10 |
女 | 30 | 15 |
P(K2≥k) | 0.10 | 0.05 | 0.01 |
k | 2.706 | 3.841 | 6.635 |
A. | 在犯錯(cuò)誤的概率不超過1%的前提下,認(rèn)為“該校學(xué)生能否做到‘光盤’與性別無關(guān)” | |
B. | 有99%以上的把握認(rèn)為“該校學(xué)生能否做到‘光盤’與性別有關(guān)” | |
C. | 在犯錯(cuò)誤的概率不超過10%的前提下,認(rèn)為“該校學(xué)生能否做到‘光盤’與性別有關(guān)” | |
D. | 有90%以上的把握認(rèn)為“該校學(xué)生能否做到‘光盤’與性別無關(guān)” |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [1,2] | B. | [1,+∞) | C. | $(0,\sqrt{5}]$ | D. | $[1,\sqrt{5}]$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com