7.已知全集U=R,集合A={x|lgx≤0],B={x|2x≤$\root{3}{2}$},則A∪B=(-∞,1].

分析 分別求解指數(shù)不等式和對(duì)數(shù)不等式化簡(jiǎn)B,A,然后利用并集運(yùn)算得答案.

解答 解:由lgx≤0,得0<x≤1,
∴A={x|lgx≤0}=(0,1];
由2x≤$\root{3}{2}$,得x$≤\frac{1}{3}$,
∴B={x|2x≤$\root{3}{2}$}=(-∞,$\frac{1}{3}$].
則A∪B=(-∞,1].
故答案為:(-∞,1].

點(diǎn)評(píng) 本題考查并集及其運(yùn)算,考查了指數(shù)不等式和對(duì)數(shù)不等式的解法,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.函數(shù)y=x-|-x|是(  )
A.奇函數(shù)B.偶函數(shù)
C.既是奇函數(shù)又是偶函數(shù)D.既不是奇函數(shù)又不是偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知在平面直角坐標(biāo)系xOy中,以O(shè)x軸為始邊作兩個(gè)銳角α,β,他們的終邊分別與單位圓交于A,B,A,B的橫坐標(biāo)分別為$\frac{\sqrt{2}}{10}$,$\frac{2\sqrt{5}}{5}$,則α+2β的值為$\frac{3π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.現(xiàn)有三個(gè)實(shí)數(shù)的集合,既可以表示為{a,$\frac{a}$,1},也可以表示為{a2,a+b,0},則a2015+b2015=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知U=R,集合A={x|-2≤x<3},B={x|x<1},求A∩(∁UB),(∁UA)∩(∁UB).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.①為實(shí)時(shí)監(jiān)控生產(chǎn)線上生產(chǎn)的電子管的質(zhì)量,需要從生產(chǎn)的產(chǎn)品中抽出約$\frac{1}{20}$的產(chǎn)品進(jìn)行檢驗(yàn),請(qǐng)?jiān)O(shè)計(jì)一個(gè)合理的抽取樣本方法.
②請(qǐng)?zhí)岢鲆粋(gè)統(tǒng)計(jì)問(wèn)題,并指出問(wèn)題涉及的總體是什么,所涉及的變量是什么?
③為解決第二小題問(wèn)題,采用普查方法和隨機(jī)抽樣方法收集數(shù)據(jù)各有什么優(yōu)缺點(diǎn)?并設(shè)計(jì)一個(gè)抽樣方法.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.(1)若2a=5b=10,求$\frac{1}{a}+\frac{1}$的值     
(2)求函數(shù)y=(2x2-1)(3x+1)的導(dǎo)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知直線x-y-5=0與圓x2+y2-4x+6y-12=0相交于A、B兩點(diǎn),則弦AB的長(zhǎng)為( 。
A.5B.8C.10D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知f(x)=(2+x)(2-x),則f′(4)=-8.

查看答案和解析>>

同步練習(xí)冊(cè)答案