分析 命題p:利用反比例函數(shù)的單調(diào)性可得:m≤1.命題q;利用根與系數(shù)的關(guān)系可得:|x1-x2|=$\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$=$\sqrt{{a}^{2}+8}$.根據(jù)a∈[-1,1],可得$\sqrt{{a}^{2}+8}$∈$[2\sqrt{2},3]$.由不等式m2+5m-3≥|x1-x2|對任意實數(shù),a∈[-1,1]恒成立,可得m2+5m-3≥3.由(¬p)∧q為真命題,可得p為假命題,q為真命題.
解答 解:命題p:f(x)=$\frac{1}{x-m}$在區(qū)間(1,+∞)上是減函數(shù),∴m≤1.
命題q;x1,x2是方程x2-ax-2=0的兩個實根,∴|x1-x2|=$\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$=$\sqrt{{a}^{2}+8}$.
∵a∈[-1,1],∴$\sqrt{{a}^{2}+8}$∈$[2\sqrt{2},3]$.
由不等式m2+5m-3≥|x1-x2|對任意實數(shù),a∈[-1,1]恒成立,
∴m2+5m-3≥3,即m2+5m-6≥0,解得m≥1或m≤-6.
∵(¬p)∧q為真命題,
∴p為假命題,q為真命題.
∴$\left\{\begin{array}{l}{m>1}\\{m≥1或m≤-6}\end{array}\right.$,解得m>1.
∴實數(shù)m的取值范圍是(1,+∞).
點評 本題考查了函數(shù)的性質(zhì)、一元二次方程的根與系數(shù)的關(guān)系、不等式的解法、簡易邏輯的判定方法,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 12-4$\sqrt{3}$ | B. | 12+4$\sqrt{3}$ | C. | 4$\sqrt{3}$-4 | D. | 4$\sqrt{3}$+4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,-3)∪(4,+∞) | B. | (-∞,-4)∪(3,+∞) | C. | (-3,4) | D. | (-4,3) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | A${\;}_{10}^{7}$ | B. | C${\;}_{10}^{7}$ | C. | 84 | D. | 63 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1-($\frac{1}{2}$)n | B. | 1-($\frac{1}{2}$)n-1 | C. | ($\frac{1}{2}$)n-1 | D. | ($\frac{1}{2}$)n-1-1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com