A. | 向左平移$\frac{π}{6}$個單位長度 | B. | 向左平移$\frac{π}{3}$個單位長度 | ||
C. | 向右平移$\frac{π}{6}$個單位長度 | D. | 向右平移$\frac{π}{3}$個單位長度 |
分析 由條件利用y=Asin(ωx+φ)的圖象變換規(guī)律,誘導(dǎo)公式,得出結(jié)論.
解答 解:由題意可得,函數(shù)f(x)=Asin($ωx+\frac{π}{6}$)(A>0,ω>0)的周期為$\frac{2π}{ω}$=2•$\frac{π}{2}$,
求得ω=2,f(x)=Asin(2x+$\frac{π}{6}$).
故把f(x)=Asin(2x+$\frac{π}{6}$)的圖象向左平移$\frac{π}{6}$個單位長度,
可得 y=Asin[2(x+$\frac{π}{6}$)+$\frac{π}{6}$]=Acos2x的圖象,
故選:A.
點評 本題主要考查誘導(dǎo)公式的應(yīng)用,利用了y=Asin(ωx+φ)的圖象變換規(guī)律,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,0]∪(1,+∞) | B. | (1,+∞) | C. | (-∞,0)∪[1,+∞) | D. | (-∞,0) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | $\frac{1}{2}$ | C. | $\sqrt{2}$ | D. | $\frac{{\sqrt{2}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
百分制 | 85分及以上 | 70分到84分 | 60分到69分 | 60分以下 |
等級 | A | B | C | D |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {0} | B. | {2} | C. | {-2,-1,1,2} | D. | {-2,2} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | 2 | C. | $\sqrt{2}$ | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com