分析 (1)將x,y的值代入方程,求出a的值即可;(2)求出函數(shù)表達式,根據(jù)函數(shù)的單調(diào)性,求出函數(shù)的極大值和極小值,從而求出函數(shù)的最大值,得到答案即可.
解答 解:(1)因為x=5時,y=11,所以$\frac{a}{2}$+10=11,a=2.…(2分)
(2)由(1)可知,該商品每日的銷售量y=$\frac{2}{x-3}$+10(x-6)2.
所以該家具的月利潤為:
f(x)=(x-3)[$\frac{2}{x-3}$+10(x-6)2]=2+10(x-3)(x-6)2,3<x<6.…(5分)
從而,f′(x)=10[(x-6)2+2(x-3)(x-6)]=30(x-4)(x-6).…(7分)
于是,當x變化時,f′(x),f(x)的變化情況如下表:
x | (3,4) | 4 | (4,6) |
f′(x) | + | 0 | - |
f(x) | 單調(diào)遞增 | 極大值42 | 單調(diào)遞減 |
點評 本題考查了函數(shù)的單調(diào)性、最值問題,考查導數(shù)的應用以及函數(shù)模型的建立,是一道中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-∞,$\frac{2}{3}$)∪($\frac{4}{3}$,+∞) | B. | ($\frac{2}{3}$,$\frac{4}{3}$) | C. | (-∞,$\frac{1}{3}$)∪($\frac{2}{3}$,+∞) | D. | ($\frac{1}{3}$,$\frac{2}{3}$) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{2}$ | B. | $2\sqrt{2}$ | C. | $3\sqrt{2}$ | D. | $2+2\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com