下列各圖中,可表示函數(shù)y=f(x)的圖象的只可能是圖中的( 。
A、
B、
C、
D、
考點(diǎn):函數(shù)的概念及其構(gòu)成要素
專(zhuān)題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)函數(shù)的定義和函數(shù)圖象之間的關(guān)系即可得到結(jié)論.
解答: 解:根據(jù)函數(shù)的定義可知,B,C,D對(duì)應(yīng)的圖象不滿足y值的唯一性,
故A正確,
故選:A.
點(diǎn)評(píng):本題主要考查函數(shù)的定義和函數(shù)圖象之間的關(guān)系,比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=
1
x
在[2,3]上的最小值為( 。
A、2
B、
1
2
C、
1
3
D、-
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在正方體ABCD-A1B1C1D1中,二面角A1-BD-A的正切值等于( 。
A、
3
3
B、
2
2
C、
2
D、
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)奇函數(shù)f(x)=sin(ωx+φ)+cos(ωx+φ)(ω>0,|φ|<
π
2
)的最小正周期為π,則(  )
A、f(x)在(0,
π
2
)單調(diào)遞減
B、f(x)在(
π
4
4
)單調(diào)遞減
C、f(x)在(0,
π
2
)單調(diào)遞增
D、f(x)在(
π
4
,
4
)單調(diào)遞增

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

空間四邊形ABCD的四邊相等,則它的兩對(duì)角線AC、BD的關(guān)系是( 。
A、垂直且相交
B、相交但不一定垂直
C、垂直但不相交
D、不垂直也不相交

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

德國(guó)著名數(shù)學(xué)家狄利克雷在數(shù)學(xué)領(lǐng)域成就顯著,以其名命名的函數(shù)f(x)=
1,x∈Q
0,x∈RQ
被稱為狄利克雷函數(shù),其中R為實(shí)數(shù)集,Q為有理數(shù)集,則關(guān)于函數(shù)f(x)有如下四個(gè)命題:
①f(f(x))=0;
②函數(shù)f(x)是偶函數(shù);
③任取一個(gè)不為零的有理數(shù)T,f(x+T)=f(x)對(duì)任意的x∈R恒成立;
④存在三個(gè)點(diǎn)A(x1,f(x1)),B(x2,f(x2)),C(x3,f(x3)),使得△ABC為等邊三角形.
其中真命題的個(gè)數(shù)是( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=
1
x
-x
的圖象關(guān)于( 。
A、x軸對(duì)稱
B、y軸對(duì)稱
C、直線y=x對(duì)稱
D、坐標(biāo)原點(diǎn)對(duì)稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

p:函數(shù)f(x)=x2-2mx+4在[2,+∞)上單調(diào)遞增;q:關(guān)于x的不等式4x2+4(m-2)x+1>0的解集為R.若p真q假,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知|
a
|=1,|
b
|=2.
(Ⅰ)若
a
b
,求
a
b

(Ⅱ)若
a
-
b
c
垂直,求當(dāng)k為何值時(shí),(k
a
-
b
)⊥(
a
+2
b
).

查看答案和解析>>

同步練習(xí)冊(cè)答案