20.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+2(x≤0)}\\{{e}^{x}-1(x>0)}\end{array}\right.$,若函數(shù)y=f(x)-2x+b有兩個(gè)零點(diǎn),則參數(shù)b的取值范圍是(-∞,-2]∪(0,2ln2-1).

分析 由y=f(x)-2x+b=0得f(x)=2x-b,作出函數(shù)f(x)和y=2x-b的圖象,利用數(shù)形結(jié)合進(jìn)行求解即可.

解答 解:作出函數(shù)f(x)的圖象如圖:,
由y=f(x)-2x+b=0得f(x)=2x-b,
當(dāng)g(x)=2x-b經(jīng)過點(diǎn)(0,2)時(shí),滿足兩個(gè)函數(shù)有兩個(gè)交點(diǎn),
此時(shí)-b=2,即b=-2,當(dāng)-b≥2,即b≤-2時(shí),滿足條件,
當(dāng)g(x)=2x-b與f(x)=ex-1相切時(shí),
由f′(x)=ex=2得x=ln2,y=eln2-1=2-1=1,即切點(diǎn)坐標(biāo)為(ln2,1),
此時(shí)2ln2-b=1,即b=2ln2-1,
當(dāng)直線g(x)=2x-b經(jīng)過原點(diǎn)時(shí),b=0,
∴要使兩個(gè)函數(shù)有兩個(gè)交點(diǎn),
則此時(shí)0<b<2ln2-1,
綜上0<b<2ln2-1或b≤-2,
故實(shí)數(shù)b的取值范圍是(-∞,-2]∪(0,2ln2-1),
故答案為:(-∞,-2]∪(0,2ln2-1)

點(diǎn)評(píng) 本題主要考查函數(shù)零點(diǎn)個(gè)數(shù)的判斷,根據(jù)函數(shù)與方程之間的關(guān)系轉(zhuǎn)化為兩個(gè)函數(shù)的交點(diǎn)個(gè)數(shù)問題是解決本題的關(guān)鍵.注意要利用數(shù)形結(jié)合.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖,在長方形ABCD中,AB=2,AD=1,E為CD的中點(diǎn),以AE為折痕,把△DAE折起為△D′AE,且平面D′AE⊥平面ABCE.
(1)求證:AD′⊥BE;
(2)求三棱錐D′-ABE的體積;
(3)求D′E與BC所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知角α的終邊在直線y=2x上,則tan(α+$\frac{π}{4}$)的值是-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知x∈(1,5),則函數(shù)y=$\frac{2}{x-1}$+$\frac{1}{5-x}$的最小值為$\frac{3+2\sqrt{2}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,若S3≥6,S5≤20,則a6的最大值為10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知等差數(shù)列{an}的公差為d,等比數(shù)列{bn}的公比為q,且數(shù)列{bn}的前n項(xiàng)和為Sn
(1)若a1=b1=d=2,S3<a1006+5b2-2016,求整數(shù)q的值;
(2)若Sn+1-2Sn=2,試問數(shù)列{bn}中是否存在一點(diǎn)bk,使得bk恰好可以表示為該數(shù)列中連續(xù)p(p∈N,p≥2)項(xiàng)的和?請(qǐng)說明理由?
(3)若b1=ar,b2=as≠ar,b3=at(其中t>s>r,且(s-r)是(t-r)的約數(shù)),證明數(shù)列{bn}中每一項(xiàng)都是數(shù)列{an}中的項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12. 如圖,圓O內(nèi)切于正方形ABCD,將圓O、正方形ABCD繞直線AC旋轉(zhuǎn)一周得到的兩個(gè)旋轉(zhuǎn)體的體積依次記為V1V2,則V1:V2=$\sqrt{2}:1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)f(x)=x2-|x2-mx-4|,x∈[-4,4]的圖象經(jīng)過點(diǎn)(2,4).
(1)求常數(shù)m的值;
(2)寫出函數(shù)f(x)的單調(diào)區(qū)間;
(3)畫出函數(shù)f(x)的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知直三棱柱ABC-A′B′C′中,∠ACB=90°,BE=GE,AG=A′G,F(xiàn)是線段A′C上的點(diǎn),EF∥平面ACB.
(I)求證:BC⊥AF;
(2)若$\frac{CF}{CA′}$=λ,求λ的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案