已知函數(shù)f(x)=[ax2+(a-1)2x+a-(a-1)2]ex(其中a∈R).
(Ⅰ)若x=0為f(x)的極值點(diǎn),求a的值;
(Ⅱ)在(Ⅰ)的條件下,解不等式f(x)>(x-1)(
1
2
x2
+x+1);
(Ⅲ)若函數(shù)f(x)在區(qū)間(1,2)上單調(diào)遞增,求實(shí)數(shù)a的取值范圍.
考點(diǎn):導(dǎo)數(shù)在最大值、最小值問題中的應(yīng)用,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,利用導(dǎo)數(shù)研究函數(shù)的極值
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:(1)利用導(dǎo)數(shù)求極值,由x=0為f(x)的極值點(diǎn)得,f′(0)=ae0=0,即得a的值;
(2)由不等式f(x)>(x-1)(
1
2
x2+x+1)
得,(x-1)[ex-(
1
2
x2+x+1)]>0,利用導(dǎo)數(shù)判斷函數(shù)g(x)=)ex-(
1
2
x2+x+1)的單調(diào)性,進(jìn)而得證;
(3)由導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系,通過討論求得a的范圍.
解答: 解:(Ⅰ)因?yàn)閒(x)=[ax2+(a-1)2x+a-(a-1)2]ex
所以f′(x)=[2ax+(a-1)2]ex+[ax2+(a-1)2x+a-(a-1)2]ex=[ax2+(a2+1)x+a]ex--------(2分)
因?yàn)閤=0為f(x)的極值點(diǎn),所以由f′(0)=ae0=0,解得a=0----------------------------(3分)
檢驗(yàn),當(dāng)a=0時(shí),f′(x)=xex,當(dāng)x<0時(shí),f′(x)<0,當(dāng)x>0時(shí),f′(x)>0,
所以x=0為f(x)的極值點(diǎn),故a=0.----------------------------------------(4分)
(Ⅱ) 當(dāng)a=0時(shí),不等式不等式f(x)>(x-1)(
1
2
x2+x+1)
?(x-1)ex>(x-1)(
1
2
x2+x+1),
整理得(x-1)[ex-(
1
2
x2+x+1)]>0,
x-1>0
ex-(
1
2
x2+x+1)>0
x-1<0
ex-(
1
2
x2+x+1)<0
------------(6分)
令g(x)=)ex-(
1
2
x2+x+1),h(x)=g′(x)=ex-(x+1),h′(x)=ex-1,
當(dāng)x>0時(shí),h′(x)=ex-1>0,當(dāng)x<0時(shí),h′(x)=ex-1<0,
所以h(x)在(-∞,0)單調(diào)遞減,在(0,+∞)單調(diào)遞增,
所以h(x)>h(0)=0,即g′(x)>0,
所以g(x)在R上單調(diào)遞增,而g(0)=0;
故ex-(
1
2
x2+x+1)>0?x>0;ex-(
1
2
x2+x+1)<0?x<0,
所以原不等式的解集為{x|x<0或x>1};-------------------------(9分)
(Ⅲ) 當(dāng)a≥0時(shí),f′(x)=[ax2+(a2+1)x+a]ex,
因?yàn)閤∈(1,2),所以f′(x)>0,所以f(x)在(1,2)上是增函數(shù).----------(11分)
當(dāng)a<0時(shí),f′(x)=a(x+a)(x+
1
a
)•ex,x∈(1,2)時(shí),f(x)是增函數(shù),f′(x)>0.
①若a<-1,則f′(x)=a(x+a)(x+
1
a
)•ex>0⇒x∈(-
1
a
,-a),由(1,2)⊆(-
1
a
,-a)得a≤-2;
②若-1<a<0,則f′(x)=a(x+a)(x+
1
a
)•ex>0⇒x∈(-a,-
1
a
),由(1,2)⊆(-a,-
1
a
)得-
1
2
≤a<0.
③若a=-1,f′(x)=-(x-1)2•ex≤0,不合題意,舍去.
綜上可得,實(shí)數(shù)a的取值范圍是(-∞,-2]∪[-
1
2
,+∞)----------------(14分)
點(diǎn)評(píng):本題主要考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、極值等知識(shí),考查分類討論等數(shù)學(xué)思想的運(yùn)用能力,屬難題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

為了構(gòu)建和諧社會(huì)建立幸福指標(biāo)體系,某地區(qū)決定用分層抽樣的方法從公務(wù)員、教師、自由職業(yè)者三個(gè)群體的相關(guān)人員中,抽取若干人組成研究小組,有關(guān)數(shù)據(jù)見下表(單位:人).
相關(guān)人員數(shù) 抽取人數(shù)
公務(wù)員 32 m
教師 16 n
自由職業(yè)者 64 8
(Ⅰ)求研究小組的總?cè)藬?shù);
(Ⅱ)若從研究小組的公務(wù)員和教師中隨機(jī)選3人撰寫研究報(bào)告,求其中恰好有1人來自教師的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果數(shù)列{an}同時(shí)滿足:(1)各項(xiàng)均不為0,(2)存在常數(shù)k,對(duì)任意n∈N*,an+12anan+2+k都成立,則稱這樣的數(shù)列{an}為“類等比數(shù)列”.由此等比數(shù)列必定是“類等比數(shù)列”.問:
(1)各項(xiàng)均不為0的等差數(shù)列{bn}是否為“類等比數(shù)列”?說明理由.
(2)若數(shù)列{an}為“類等比數(shù)列”,且a1=a,a2=b(a,b為常數(shù)),是否存在常數(shù)λ,使得an+an+2=λan+1對(duì)任意n∈N*都成立?若存在,求出λ;若不存在,請(qǐng)舉出反例.
(3)若數(shù)列{an}為“類等比數(shù)列”,且a1=a,a2=b,k=a2+b2(a,b為常數(shù)),求數(shù)列{an}的前n項(xiàng)之和Sn;數(shù)列{Sn}的前n項(xiàng)之和記為Tn,求T4k-3(k∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某中學(xué)招聘教師有筆試、面試兩個(gè)環(huán)節(jié),筆試成績(jī)超過85分者才能進(jìn)入面試環(huán)節(jié),現(xiàn)已記錄前來應(yīng)聘的9位男教師和9位女教師的筆試成績(jī),成績(jī)用莖葉圖表示如圖所示.
(Ⅰ)求男教師的平均成績(jī)和女教師成績(jī)的中位數(shù);
(Ⅱ)從進(jìn)入面試環(huán)節(jié)的老師中隨機(jī)挑選2位老師,求2位老師中至少有一位男教師的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,2sin2AcosA-sin3A+
3
cosA=
3

(1)求角A的大;
(2)已知a,b,c分別是內(nèi)角A,B,C的對(duì)邊,若a=1且sinA+sin(B-C)=2sin2C,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=(cosx+sinx)(cosx-sinx).
(1)求函數(shù)f(x)的單調(diào)增區(qū)間;
(2)若0<α<
π
2
,0<β<
π
2
,且f(
α
2
)=
1
3
,f(
β
2
)=
2
3
,求sin(α-β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

觀察等式:
sin50°+sin20°=2sin35°cos15°
sin66°+sin32°=2sin49°cos17°
猜想符合以上兩式規(guī)律的一般結(jié)論,并進(jìn)行證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某班50位同學(xué),期中考試成績(jī)?nèi)柯湓赱90,150]上,將成績(jī)分成6組:[90,100),[100,110),[110,120),[120,130),[130,140),[140,150],加以統(tǒng)計(jì),得到如圖所示的部分頻率分布直方圖.
(Ⅰ)求成績(jī)?cè)赱110,120)上的學(xué)生人數(shù),并將頻率分布直方圖補(bǔ)充完整;
(Ⅱ)從成績(jī)不低于130的學(xué)生中隨機(jī)抽取兩名,求至少一名學(xué)生的成績(jī)不低于140的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓心在第一象限的圓C經(jīng)過坐標(biāo)原點(diǎn)O,與x軸的正半軸交于另一個(gè)點(diǎn)A,且∠OCA=120°,該圓截x軸所得弦長(zhǎng)為2
3
,則圓C的標(biāo)準(zhǔn)方程為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案