(本題滿分12分)
已知函數(shù)(其中常數(shù))
(1)判斷函數(shù)的單調(diào)性,并加以證明;
(2)如果是奇函數(shù),求實(shí)數(shù)的值。
(1);(2);(3).
解析試題分析:(1)先求解函數(shù)定義域,然后結(jié)合單調(diào)性的定義,作差變形定號,下結(jié)論得到。
(2)因?yàn)楹瘮?shù)是奇函數(shù)則有f(-x)+f(x)=0,進(jìn)而得到關(guān)于a的表達(dá)式得到求解。
解(1)
,即(3分)
(2),
,即(7分)
(3)不等式對于恒成立,
,(9分)
而函數(shù)在區(qū)間上是增函數(shù)
所以,在區(qū)間上的最小值是(10分)
即,實(shí)數(shù)的取值范圍是.(12分)
考點(diǎn):本題主要考查了函數(shù)的奇偶性和單調(diào)性的運(yùn)用。
點(diǎn)評:解決該試題的關(guān)鍵是能利用定義法來求解和證明函數(shù)單調(diào)性問題。作差變形定號來證明。奇偶性的判定要分為兩步,一看定義域,二看解析式f(-x)與f(x)的關(guān)系。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分15分)已知函數(shù),.
(1)用定義證明:不論為何實(shí)數(shù)在上為增函數(shù);
(2)若為奇函數(shù),求的值;
(3)在(2)的條件下,求在區(qū)間[1,5]上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知f (x)=.
(1)求函數(shù)f (x)的值域.
(2)若f (t)=3,求t的值.
(3)用單調(diào)性定義證明在[2,+∞)上單調(diào)遞增.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分) 已知方程(為實(shí)數(shù))有兩個(gè)不相等的實(shí)數(shù)根,分別求:
(Ⅰ)若方程的根為一正一負(fù),則求實(shí)數(shù)的取值范圍;
(Ⅱ)若方程的兩根都在內(nèi),則求實(shí)數(shù)的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(1)若,求的值;
(2)若的圖像與直線相切于點(diǎn),求的值;
(3)在(2)的條件下,求函數(shù)的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分)已知函數(shù),是的一個(gè)極值點(diǎn).
(1)求的單調(diào)遞增區(qū)間;
(2)若當(dāng)時(shí),恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)某炮兵陣地位于地面A處,兩觀察所分別位于地面點(diǎn)C和D處, 已知CD=6000m,∠ACD=45°,∠ADC=75°, 目標(biāo)出現(xiàn)于地面點(diǎn)B處時(shí),測得∠BCD=30°,∠BDC=15°(如圖),求炮兵陣地到目標(biāo)的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知是定義在上的偶函數(shù),且當(dāng)時(shí),.
(1)求當(dāng)時(shí),的解析式;
(2)作出函數(shù)的圖象,并指出其單調(diào)區(qū)間(不必證明).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com