20.某幾何體的三視圖如圖所示,若該幾何體的體積為64+16π,則實(shí)數(shù)a等于( 。
A.2B.2$\sqrt{2}$C.4D.4$\sqrt{2}$

分析 由三視圖可知該幾何體為一個(gè)三棱柱和一個(gè)圓柱的$\frac{1}{4}$組合體,利用體積公式列方程求解即可.

解答 解:由三視圖可知幾何體為一個(gè)三棱柱和一個(gè)圓柱的$\frac{1}{4}$組合體.
三棱柱的底面是一個(gè)底為2a,高為a的三角形,三棱柱的高為a,圓柱的底面半徑、高均為a.
∴幾何體的體積V=$\frac{1}{2}×2a×a×a$+$\frac{1}{4}π{a}^{2}•a$=64+16π.
解得a=4.
故選:C.

點(diǎn)評(píng) 本題考查三視圖求幾何體的體積,考查計(jì)算能力,空間想象能力,三視圖復(fù)原幾何體是解題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知函數(shù)f(x)=Asin(ωx+α)(A>0,ω>0,-$\frac{π}{2}$<α<$\frac{π}{2}$)的最小正周期是π,且當(dāng)x=$\frac{π}{6}$時(shí),f(x)取得最大值2.
(1)求f(x)的解析式,并作出f(x)在[0,π]上的圖象(要列表);
(2)將函數(shù)f(x)的圖象向右平移m(m>0)個(gè)單位長(zhǎng)度后得到函數(shù)y=g(x)的圖象,且y=g(x)是偶函數(shù),求m的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.如圖,矩形ABCD中,$\frac{AB}{AD}$=λ(λ>1),將其沿AC翻折,使點(diǎn)D到達(dá)點(diǎn)E的位置,且二面角C-AB-E為直二面角.
(1)求證:平面ACE⊥平面BCE;
(2)設(shè)F是BE的中點(diǎn),二面角E-AC-F的平面角的大小為θ,當(dāng)λ∈[2,3]時(shí),求cosθ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.如圖,已知多面體ABCDEF中,ABCD為菱形,∠ABC=60°,AE⊥平面ABCD,AE∥CF,AB=AE=1,AF⊥BE.
(1)求證:AF⊥平面BDE;
(2)求二面角F-BE-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知函數(shù)f(t)=$\sqrt{\frac{1+t}{1-t}}$,g(x)=cosx•f(sinx)-sinx•f(cosx),x∈(π,$\frac{7π}{12}$).
(1)求函數(shù)g(x)的值域;
(2)若函數(shù)y=|cos(ωx+$\frac{π}{6}$)|•f(sin(ωx+$\frac{π}{6}$))(ω>0)在區(qū)間[$\frac{π}{3}$,π]上為增函數(shù),求實(shí)數(shù)ω的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知函數(shù)f(x)=$\left\{\begin{array}{l}|{lnx}|\;,x>0\\{x^2}+2x-1,x≤0.\end{array}$若f(x)的圖象與直線y=ax-1有且只有三個(gè)公共點(diǎn),則實(shí)數(shù)a的取值范圍是(0,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.如圖,在矩形ABCD中,AB=3,BC=3$\sqrt{3}$,點(diǎn)E、H分別是所在邊靠近B、D的三等分點(diǎn),現(xiàn)沿著EH將矩形折成直二面角,分別連接AD、AC、CB,形成如圖所示的多面體.
(Ⅰ)證明:平面BCE∥平面ADH;
(Ⅱ)證明:EH⊥AC;
(Ⅲ)求二面角B-AC-D的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知函數(shù)f(x)=lnx+a(1-x)
(1)討論f(x)的單調(diào)性;
(2)若f(x)在(2,+∞)上為單調(diào)函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且a(1+cosB)+b(1+cosA)=3c.
(1)求證:a,c,b成等差數(shù)列;
(2)若C=$\frac{π}{3}$,求$\frac{a}$的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案