分析 (1)求出函數(shù)g(x),利用輔助角公式化簡,即可求函數(shù)g(x)的值域;
(2)求出y=|cos(ωx+$\frac{π}{6}$)|•f(sin(ωx+$\frac{π}{6}$))(ω>0)的單調(diào)遞增區(qū)間為$[\frac{6k-2}{3ω}π,\frac{6k+1}{3ω}π]$,k∈Z,利用函數(shù)y=|cos(ωx+$\frac{π}{6}$)|•f(sin(ωx+$\frac{π}{6}$))(ω>0)在區(qū)間[$\frac{π}{3}$,π]上為增函數(shù),求實數(shù)ω的取值范圍.
解答 解:(1)$f(sinx)=\sqrt{\frac{1+sinx}{1-sinx}}=\sqrt{\frac{{{{(1+sinx)}^2}}}{{{{cos}^2}x}}}=\frac{1+sinx}{|cosx|}$,∵$x∈(π,\frac{7π}{12})$
∴$f(sinx)=-\frac{1+sinx}{cosx}$,∴cosx•f(sinx)=-1-sinx
同理sinx•f(cosx)=-1-cosx,∴$g(x)=-sinx+cosx=\sqrt{2}cos(x+\frac{π}{4})$
∵$x∈(π,\frac{7π}{12})$,∴$x+\frac{π}{4}∈(\frac{5π}{4},\frac{5π}{3})$,∴$cos(x+\frac{π}{4})∈(-\frac{{\sqrt{2}}}{2},\frac{1}{2})$
∴$g(x)∈(-1,\frac{{\sqrt{2}}}{2})$
(2)由(1)$y=|cos(ωx+\frac{π}{6})|•\frac{{1+sin(ωx+\frac{π}{6})}}{{|cos(ωx+\frac{π}{6})|}}=sin(ωx+\frac{π}{6})+1$
∵$π-\frac{π}{3}≤\frac{T}{2}$,$T=\frac{2π}{ω}$,∴$0<ω≤\frac{3}{2}$
令$2kπ-\frac{π}{2}≤ωx+\frac{π}{6}≤2kπ+\frac{π}{2}$,k∈Z;解之得$\frac{6k-2}{3ω}π≤x≤\frac{6k+1}{3ω}π$,k∈Z
則y=|cos(ωx+$\frac{π}{6}$)|•f(sin(ωx+$\frac{π}{6}$))(ω>0)的單調(diào)遞增區(qū)間為$[\frac{6k-2}{3ω}π,\frac{6k+1}{3ω}π]$,k∈Z,
由已知函數(shù)y=|cos(ωx+$\frac{π}{6}$)|•f(sin(ωx+$\frac{π}{6}$))(ω>0)在區(qū)間[$\frac{π}{3}$,π]上為增函數(shù),
解之得$6k-2≤ω≤\frac{6k+1}{3}$,
∵$0<ω≤\frac{3}{2}$,∴k=0,∴$0<ω≤\frac{1}{3}$.
點評 本題主要考查三角函數(shù)的恒等變換,利用y=Asin(ωx+∅)的圖象特征性質(zhì)的應用,體現(xiàn)了數(shù)形結(jié)合以及等價轉(zhuǎn)化的數(shù)學思想,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1+$\sqrt{2}$ | B. | 2+2$\sqrt{2}$ | C. | $\frac{1}{3}$ | D. | 2+$\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 26+4$\sqrt{2}$ | B. | 27+4$\sqrt{2}$ | C. | 34+4$\sqrt{2}$ | D. | 17+4$\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2 | B. | 2$\sqrt{2}$ | C. | 4 | D. | 4$\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{{80\sqrt{5}π}}{3}$-16π | B. | $\frac{{160\sqrt{5}π}}{3}$-16π | C. | $\frac{{80\sqrt{5}π}}{3}$-8π | D. | $\frac{32π}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -$\frac{1}{3}$ | B. | $\frac{1}{3}$ | C. | -$\frac{1}{4}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com